亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

After decades of improvements in the employment conditions of females in Spain, this process came to a sudden stop with the Great Spanish Recession of 2008. In this contribution, we analyse a large longitudinal corpus of national and regional news outlets employing advanced Natural Language Processing techniques to capture the valence of mentions of gender inequality expressed in the Spanish press. The automatic analysis of the news articles does indeed capture the known hardships faced by females in the Spanish labour market. Our approach can be straightforwardly generalised to other topics of interest. Assessing the sentiment and moral values expressed in the articles, we notice that females are, in the majority of cases, concerned more than males when there is a deterioration in the overall labour market conditions, based on newspaper articles. This behaviour has been present in the entire period of study (2000--2022) and looked particularly pronounced during the economic crisis of 2008 and the recent COVID-19 pandemic. Most of the time, this phenomenon looks to be more pronounced at the regional level, perhaps caused by a significant focus on local labour markets rather than on aggregate statistics or because, in local contexts, females might suffer more from an isolation or discrimination condition. Our findings contribute to a deeper understanding of the gender inequalities in Spain using alternative data, informing policymakers and stakeholders.

相關內容

Nanosatellite constellations equipped with sensors capturing large geographic regions provide unprecedented opportunities for Earth observation. As constellation sizes increase, network contention poses a downlink bottleneck. Orbital Edge Computing (OEC) leverages limited onboard compute resources to reduce transfer costs by processing the raw captures at the source. However, current solutions have limited practicability due to reliance on crude filtering methods or over-prioritizing particular downstream tasks. This work presents FOOL, an OEC-native and task-agnostic feature compression method that preserves prediction performance. FOOL partitions high-resolution satellite imagery to maximize throughput. Further, it embeds context and leverages inter-tile dependencies to lower transfer costs with negligible overhead. While FOOL is a feature compressor, it can recover images with competitive scores on perceptual quality measures at lower bitrates. We extensively evaluate transfer cost reduction by including the peculiarity of intermittently available network connections in low earth orbit. Lastly, we test the feasibility of our system for standardized nanosatellite form factors. We demonstrate that FOOL permits downlinking over 100x the data volume without relying on prior information on the downstream tasks.

Current training pipelines in object recognition neglect Hue Jittering when doing data augmentation as it not only brings appearance changes that are detrimental to classification, but also the implementation is inefficient in practice. In this study, we investigate the effect of hue variance in the context of video understanding and find this variance to be beneficial since static appearances are less important in videos that contain motion information. Based on this observation, we propose a data augmentation method for video understanding, named Motion Coherent Augmentation (MCA), that introduces appearance variation in videos and implicitly encourages the model to prioritize motion patterns, rather than static appearances. Concretely, we propose an operation SwapMix to efficiently modify the appearance of video samples, and introduce Variation Alignment (VA) to resolve the distribution shift caused by SwapMix, enforcing the model to learn appearance invariant representations. Comprehensive empirical evaluation across various architectures and different datasets solidly validates the effectiveness and generalization ability of MCA, and the application of VA in other augmentation methods. Code is available at //github.com/BeSpontaneous/MCA-pytorch.

Given the aging highway infrastructure requiring extensive rebuilding and enhancements, and the consequent rise in the number of work zones, there is an urgent need to develop advanced safety systems to protect workers. While Augmented Reality (AR) holds significant potential for delivering warnings to workers, its integration into roadway work zones remains relatively unexplored. The primary objective of this study is to improve safety measures within roadway work zones by conducting an extensive analysis of how different combinations of multimodal AR warnings influence the reaction times of workers. This paper addresses this gap through a series of experiments that aim to replicate the distinctive conditions of roadway work zones, both in real-world and virtual reality environments. Our approach comprises three key components: an advanced AR system prototype, a VR simulation of AR functionality within the work zone environment, and the Wizard of Oz technique to synchronize user experiences across experiments. To assess reaction times, we leverage both the simple reaction time (SRT) technique and an innovative vision-based metric that utilizes real-time pose estimation. By conducting five experiments in controlled outdoor work zones and indoor VR settings, our study provides valuable information on how various multimodal AR warnings impact workers reaction times. Furthermore, our findings reveal the disparities in reaction times between VR simulations and real-world scenarios, thereby gauging VR's capability to mirror the dynamics of roadway work zones. Furthermore, our results substantiate the potential and reliability of vision-based reaction time measurements. These insights resonate well with those derived using the SRT technique, underscoring the viability of this approach for tangible real-world uses.

The process of cyber mapping gives insights in relationships among financial entities and service providers. Centered around the outsourcing practices of companies within fund prospectuses in Germany, we introduce a dataset specifically designed for named entity recognition and relation extraction tasks. The labeling process on 948 sentences was carried out by three experts which yields to 5,969 annotations for four entity types (Outsourcing, Company, Location and Software) and 4,102 relation annotations (Outsourcing-Company, Company-Location). State-of-the-art deep learning models were trained to recognize entities and extract relations showing first promising results. An anonymized version of the dataset, along with guidelines and the code used for model training, are publicly available at //www.dfki.uni-kl.de/cybermapping/data/CO-Fun-1.0-anonymized.zip.

The proliferation of consumer IoT products in our daily lives has raised the need for secure device authentication and access control. Unfortunately, these resource-constrained devices typically use token-based authentication, which is vulnerable to token compromise attacks that allow attackers to impersonate the devices and perform malicious operations by stealing the access token. Using hardware fingerprints to secure their authentication is a promising way to mitigate these threats. However, once attackers have stolen some hardware fingerprints (e.g., via MitM attacks), they can bypass the hardware authentication by training a machine learning model to mimic fingerprints or reusing these fingerprints to craft forge requests. In this paper, we present MCU-Token, a secure hardware fingerprinting framework for MCU-based IoT devices even if the cryptographic mechanisms (e.g., private keys) are compromised. MCU-Token can be easily integrated with various IoT devices by simply adding a short hardware fingerprint-based token to the existing payload. To prevent the reuse of this token, we propose a message mapping approach that binds the token to a specific request via generating the hardware fingerprints based on the request payload. To defeat the machine learning attacks, we mix the valid fingerprints with poisoning data so that attackers cannot train a usable model with the leaked tokens. MCU-Token can defend against armored adversary who may replay, craft, and offload the requests via MitM or use both hardware (e.g., use identical devices) and software (e.g., machine learning attacks) strategies to mimic the fingerprints. The system evaluation shows that MCU-Token can achieve high accuracy (over 97%) with a low overhead across various IoT devices and application scenarios.

Amidst the rapid evolution of LLMs, the significance of evaluation in comprehending and propelling these models forward is increasingly paramount. Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs. However, the extent and nature of these impacts continue to be subjects of debate because most assessments have been restricted to a limited number of models and data points. Clarifying the effects of these factors on performance scores can be more effectively achieved through a statistical lens. Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods. With the advent of a uniform evaluation framework, our research leverages an expansive dataset of evaluation results, introducing a comprehensive statistical methodology. This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique, offering a robust and transparent approach to deciphering LLM performance data. Contrary to prevailing findings, our results challenge assumptions about emergent abilities and the influence of given training types and architectures in LLMs. These findings furnish new perspectives on the characteristics, intrinsic nature, and developmental trajectories of LLMs. By providing straightforward and reliable methods to scrutinize and reassess LLM performance data, this study contributes a nuanced perspective on LLM efficiency and potentials.

The management of mixed traffic that consists of robot vehicles (RVs) and human-driven vehicles (HVs) at complex intersections presents a multifaceted challenge. Traditional signal controls often struggle to adapt to dynamic traffic conditions and heterogeneous vehicle types. Recent advancements have turned to strategies based on reinforcement learning (RL), leveraging its model-free nature, real-time operation, and generalizability over different scenarios. We introduce a hierarchical RL framework to manage mixed traffic through precise longitudinal and lateral control of RVs. Our proposed hierarchical framework combines the state-of-the-art mixed traffic control algorithm as a high level decision maker to improve the performance and robustness of the whole system. Our experiments demonstrate that the framework can reduce the average waiting time by up to 54% compared to the state-of-the-art mixed traffic control method. When the RV penetration rate exceeds 60%, our technique consistently outperforms conventional traffic signal control programs in terms of the average waiting time for all vehicles at the intersection.

This paper investigates the shift in crowdsourcing towards self-managed enterprises of crowdworkers (SMECs), diverging from traditional platform-controlled models. It reviews the literature to understand the foundational aspects of this shift, focusing on identifying key factors that may explain the rise of SMECs, particularly concerning power dynamics and tensions between Online Labor Platforms (OLPs) and crowdworkers. The study aims to guide future research and inform policy and platform development, emphasizing the importance of fair labor practices in this evolving landscape.

We introduce RoDia, the first dataset for Romanian dialect identification from speech. The RoDia dataset includes a varied compilation of speech samples from five distinct regions of Romania, covering both urban and rural environments, totaling 2 hours of manually annotated speech data. Along with our dataset, we introduce a set of competitive models to be used as baselines for future research. The top scoring model achieves a macro F1 score of 59.83% and a micro F1 score of 62.08%, indicating that the task is challenging. We thus believe that RoDia is a valuable resource that will stimulate research aiming to address the challenges of Romanian dialect identification. We release our dataset at //github.com/codrut2/RoDia.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

北京阿比特科技有限公司