亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Complex valued systems with an indefinite matrix term arise in important applications such as for certain time-harmonic partial differential equations such as the Maxwell's equation and for the Helmholtz equation. Complex systems with symmetric positive definite matrices can be solved readily by rewriting the complex matrix system in two-by-two block matrix form with real matrices which can be efficiently solved by iteration using the preconditioned square block (PRESB) preconditioning method and preferably accelerated by the Chebyshev method. The appearances of an indefinite matrix term causes however some difficulties. To handle this we propose different forms of matrix splitting methods, with or without any parameters involved. A matrix spectral analyses is presented followed by extensive numerical comparisons of various forms of the methods.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

We consider Broyden's method and some accelerated schemes for nonlinear equations having a strongly regular singularity of first order with a one-dimensional nullspace. Our two main results are as follows. First, we show that the use of a preceding Newton-like step ensures convergence for starting points in a starlike domain with density 1. This extends the domain of convergence of these methods significantly. Second, we establish that the matrix updates of Broyden's method converge q-linearly with the same asymptotic factor as the iterates. This contributes to the long-standing question whether the Broyden matrices converge by showing that this is indeed the case for the setting at hand. Furthermore, we prove that the Broyden directions violate uniform linear independence, which implies that existing results for convergence of the Broyden matrices cannot be applied. Numerical experiments of high precision confirm the enlarged domain of convergence, the q-linear convergence of the matrix updates, and the lack of uniform linear independence. In addition, they suggest that these results can be extended to singularities of higher order and that Broyden's method can converge r-linearly without converging q-linearly. The underlying code is freely available.

This paper considers a novel multi-agent linear stochastic approximation algorithm driven by Markovian noise and general consensus-type interaction, in which each agent evolves according to its local stochastic approximation process which depends on the information from its neighbors. The interconnection structure among the agents is described by a time-varying directed graph. While the convergence of consensus-based stochastic approximation algorithms when the interconnection among the agents is described by doubly stochastic matrices (at least in expectation) has been studied, less is known about the case when the interconnection matrix is simply stochastic. For any uniformly strongly connected graph sequences whose associated interaction matrices are stochastic, the paper derives finite-time bounds on the mean-square error, defined as the deviation of the output of the algorithm from the unique equilibrium point of the associated ordinary differential equation. For the case of interconnection matrices being stochastic, the equilibrium point can be any unspecified convex combination of the local equilibria of all the agents in the absence of communication. Both the cases with constant and time-varying step-sizes are considered. In the case when the convex combination is required to be a straight average and interaction between any pair of neighboring agents may be uni-directional, so that doubly stochastic matrices cannot be implemented in a distributed manner, the paper proposes a push-sum-type distributed stochastic approximation algorithm and provides its finite-time bound for the time-varying step-size case by leveraging the analysis for the consensus-type algorithm with stochastic matrices and developing novel properties of the push-sum algorithm.

In this paper we consider the spatial semi-discretization of conservative PDEs. Such finite dimensional approximations of infinite dimensional dynamical systems can be described as flows in suitable matrix spaces, which in turn leads to the need to solve polynomial matrix equations, a classical and important topic both in theoretical and in applied mathematics. Solving numerically these equations is challenging due to the presence of several conservation laws which our finite models incorporate and which must be retained while integrating the equations of motion. In the last thirty years, the theory of geometric integration has provided a variety of techniques to tackle this problem. These numerical methods require to solve both direct and inverse problems in matrix spaces. We present two algorithms to solve a cubic matrix equation arising in the geometric integration of isospectral flows. This type of ODEs includes finite models of ideal hydrodynamics, plasma dynamics, and spin particles, which we use as test problems for our algorithms.

Kim et al. (2021) gave a method to embed a given binary $[n,k]$ code $\mathcal{C}$ $(k = 3, 4)$ into a self-orthogonal code of the shortest length which has the same dimension $k$ and minimum distance $d' \ge d(\mathcal{C})$. We extends this result for $k=5$ and $6$ by proposing a new method related to a special matrix, called the self-orthogonality matrix $SO_k$, obtained by shortnening a Reed-Muller code $\mathcal{R}(2,k)$. Furthermore, we disprove partially the conjecture (Kim et al. (2021)) by showing that if $31 \le n \le 256$ and $n\equiv 14,22,29 \pmod{31}$, then there exist optimal $[n,5]$ codes which are self-orthogonal. We also construct optimal self-orthogonal $[n,6]$ codes when $41 \le n \le 256$ satisfies $n \ne 46, 54, 61$ and $n \not\equiv 7, 14, 22, 29, 38, 45, 53, 60 \pmod{63}$.

We consider the problem of uncertainty quantification for an unknown low-rank matrix $\mathbf{X}$, given a partial and noisy observation of its entries. This quantification of uncertainty is essential for many real-world problems, including image processing, satellite imaging, and seismology, providing a principled framework for validating scientific conclusions and guiding decision-making. However, existing literature has mainly focused on the completion (i.e., point estimation) of the matrix $\mathbf{X}$, with little work on investigating its uncertainty. To this end, we propose in this work a new Bayesian modeling framework, called BayeSMG, which parametrizes the unknown $\mathbf{X}$ via its underlying row and column subspaces. This Bayesian subspace parametrization enables efficient posterior inference on matrix subspaces, which represents interpretable phenomena in many applications. This can then be leveraged for improved matrix recovery. We demonstrate the effectiveness of BayeSMG over existing Bayesian matrix recovery methods in numerical experiments, image inpainting, and a seismic sensor network application.

We develop a generalized hybrid iterative approach for computing solutions to large-scale Bayesian inverse problems. We consider a hybrid algorithm based on the generalized Golub-Kahan bidiagonalization for computing Tikhonov regularized solutions to problems where explicit computation of the square root and inverse of the covariance kernel for the prior covariance matrix is not feasible. This is useful for large-scale problems where covariance kernels are defined on irregular grids or are only available via matrix-vector multiplication, e.g., those from the Mat\'{e}rn class. We show that iterates are equivalent to LSQR iterates applied to a directly regularized Tikhonov problem, after a transformation of variables, and we provide connections to a generalized singular value decomposition filtered solution. Our approach shares many benefits of standard hybrid methods such as avoiding semi-convergence and automatically estimating the regularization parameter. Numerical examples from image processing demonstrate the effectiveness of the described approaches.

Inspired by branch-and-bound and cutting plane proofs in mixed-integer optimization and proof complexity, we develop a general approach via Hoffman's Helly systems. This helps to distill the main ideas behind optimality and infeasibility certificates in optimization. The first part of the paper formalizes the notion of a certificate and its size in this general setting. The second part of the paper establishes lower and upper bounds on the sizes of these certificates in various different settings. We show that some important techniques existing in the literature are purely combinatorial in nature and do not depend on any underlying geometric notions.

Several recent applications of optimal transport (OT) theory to machine learning have relied on regularization, notably entropy and the Sinkhorn algorithm. Because matrix-vector products are pervasive in the Sinkhorn algorithm, several works have proposed to \textit{approximate} kernel matrices appearing in its iterations using low-rank factors. Another route lies instead in imposing low-rank constraints on the feasible set of couplings considered in OT problems, with no approximations on cost nor kernel matrices. This route was first explored by Forrow et al., 2018, who proposed an algorithm tailored for the squared Euclidean ground cost, using a proxy objective that can be solved through the machinery of regularized 2-Wasserstein barycenters. Building on this, we introduce in this work a generic approach that aims at solving, in full generality, the OT problem under low-rank constraints with arbitrary costs. Our algorithm relies on an explicit factorization of low rank couplings as a product of \textit{sub-coupling} factors linked by a common marginal; similar to an NMF approach, we alternatively updates these factors. We prove the non-asymptotic stationary convergence of this algorithm and illustrate its efficiency on benchmark experiments.

We propose a novel recommendation method based on tree. With user behavior data, the tree based model can capture user interests from coarse to fine, by traversing nodes top down and make decisions whether to pick up each node to user. Compared to traditional model-based methods like matrix factorization (MF), our tree based model does not have to fetch and estimate each item in the entire set. Instead, candidates are drawn from subsets corresponding to user's high-level interests, which is defined by the tree structure. Meanwhile, finding candidates from the entire corpus brings more novelty than content-based approaches like item-based collaborative filtering.Moreover, in this paper, we show that the tree structure can also act to refine user interests distribution, to benefit both training and prediction. The experimental results in both open dataset and Taobao display advertising dataset indicate that the proposed method outperforms existing methods.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司