亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large-scale communication networks, such as the internet, rely on routing packets of data through multiple intermediate nodes to transmit information from a sender to a receiver. In this paper, we develop a model of a quantum communication network that routes information simultaneously along multiple paths passing through intermediate stations. We demonstrate that a quantum routing approach can in principle extend the distance over which information can be transmitted reliably. Surprisingly, the benefit of quantum routing also applies to the transmission of classical information: even if the transmitted data is purely classical, delocalising it on multiple routes can enhance the achievable transmission distance. Our findings highlight the potential of a future quantum internet not only for achieving secure quantum communication and distributed quantum computing but also for extending the range of classical data transmission.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Networking · MoDELS · 推斷 · Integration ·
2023 年 11 月 13 日

We consider two applications where we study how dependence structure between many variables is linked to external network data. We first study the interplay between social media connectedness and the co-evolution of the COVID-19 pandemic across USA counties. We next study study how the dependence between stock market returns across firms relates to similarities in economic and policy indicators from text regulatory filings. Both applications are modelled via Gaussian graphical models where one has external network data. We develop spike-and-slab and graphical LASSO frameworks to integrate the network data, both facilitating the interpretation of the graphical model and improving inference. The goal is to detect when the network data relates to the graphical model and, if so, explain how. We found that counties strongly connected on Facebook are more likely to have similar COVID-19 evolution (positive partial correlations), accounting for various factors driving the mean. We also found that the association in stock market returns depends in a stronger fashion on economic than on policy indicators. The examples show that data integration can improve interpretation, statistical accuracy, and out-of-sample prediction, in some instances using significantly sparser graphical models.

A simple way of obtaining robust estimates of the "center" (or the "location") and of the "spread" of a dataset is to use the maximum likelihood estimate with a class of heavy-tailed distributions, regardless of the "true" distribution generating the data. We observe that the maximum likelihood problem for the Cauchy distributions, which have particularly heavy tails, is geodesically convex and therefore efficiently solvable (Cauchy distributions are parametrized by the upper half plane, i.e. by the hyperbolic plane). Moreover, it has an appealing geometrical meaning: the datapoints, living on the boundary of the hyperbolic plane, are attracting the parameter by unit forces, and we search the point where these forces are in equilibrium. This picture generalizes to several classes of multivariate distributions with heavy tails, including, in particular, the multivariate Cauchy distributions. The hyperbolic plane gets replaced by symmetric spaces of noncompact type. Geodesic convexity gives us an efficient numerical solution of the maximum likelihood problem for these distribution classes. This can then be used for robust estimates of location and spread, thanks to the heavy tails of these distributions.

We address the problem of testing conditional mean and conditional variance for non-stationary data. We build e-values and p-values for four types of non-parametric composite hypotheses with specified mean and variance as well as other conditions on the shape of the data-generating distribution. These shape conditions include symmetry, unimodality, and their combination. Using the obtained e-values and p-values, we construct tests via e-processes also known as testing by betting, as well as tests based on combining p-values. Simulation and empirical studies are conducted for a few settings of the null hypotheses, and they show that methods based on e-processes are efficient.

Physics-informed neural networks and operator networks have shown promise for effectively solving equations modeling physical systems. However, these networks can be difficult or impossible to train accurately for some systems of equations. We present a novel multifidelity framework for stacking physics-informed neural networks and operator networks that facilitates training. We successively build a chain of networks, where the output at one step can act as a low-fidelity input for training the next step, gradually increasing the expressivity of the learned model. The equations imposed at each step of the iterative process can be the same or different (akin to simulated annealing). The iterative (stacking) nature of the proposed method allows us to progressively learn features of a solution that are hard to learn directly. Through benchmark problems including a nonlinear pendulum, the wave equation, and the viscous Burgers equation, we show how stacking can be used to improve the accuracy and reduce the required size of physics-informed neural networks and operator networks.

For the differential privacy under the sub-Gamma noise, we derive the asymptotic properties of a class of network models with binary values with a general link function. In this paper, we release the degree sequences of the binary networks under a general noisy mechanism with the discrete Laplace mechanism as a special case. We establish the asymptotic result including both consistency and asymptotically normality of the parameter estimator when the number of parameters goes to infinity in a class of network models. Simulations and a real data example are provided to illustrate asymptotic results.

Neural network models of language have long been used as a tool for developing hypotheses about conceptual representation in the mind and brain. For many years, such use involved extracting vector-space representations of words and using distances among these to predict or understand human behavior in various semantic tasks. Contemporary large language models (LLMs), however, make it possible to interrogate the latent structure of conceptual representations using experimental methods nearly identical to those commonly used with human participants. The current work utilizes three common techniques borrowed from cognitive psychology to estimate and compare the structure of concepts in humans and a suite of LLMs. In humans, we show that conceptual structure is robust to differences in culture, language, and method of estimation. Structures estimated from LLM behavior, while individually fairly consistent with those estimated from human behavior, vary much more depending upon the particular task used to generate responses--across tasks, estimates of conceptual structure from the very same model cohere less with one another than do human structure estimates. These results highlight an important difference between contemporary LLMs and human cognition, with implications for understanding some fundamental limitations of contemporary machine language.

Cloud-RAN is a recent architecture for mobile networks where the processing units are located in distant data centers while, until now, they were attached to antennas. The main challenge, to fulfill protocol constraints, is to guarantee low latency for the periodic messages sent from each antenna to its processing unit and back. The problem we address is to find a periodic sending scheme of these messages \emph{without contention nor buffering}, when all messages are of the same size and the period is fixed. We study the periodic message assignment problem modeling this situation on a common topology, where contention arises from a single link shared by all antennas. The problem is reminiscent of coupled-task scheduling, but the periodicity introduces a new twist. We study how the problem behaves with regard to the \emph{load} of the shared link. The main contributions are polynomial-time algorithms which \emph{always} find a solution for an arbitrary size of messages and load at most $2/5$ or for messages of size one and load at most $\phi - 1$, the golden ratio conjugate. We also prove that a randomized greedy algorithm finds a solution on almost all instances with high probability, explaining why most greedy algorithms work so well in practice.

It is well known that artificial neural networks initialized from independent and identically distributed priors converge to Gaussian processes in the limit of large number of neurons per hidden layer. In this work we prove an analogous result for Quantum Neural Networks (QNNs). Namely, we show that the outputs of certain models based on Haar random unitary or orthogonal deep QNNs converge to Gaussian processes in the limit of large Hilbert space dimension $d$. The derivation of this result is more nuanced than in the classical case due to the role played by the input states, the measurement observable, and the fact that the entries of unitary matrices are not independent. An important consequence of our analysis is that the ensuing Gaussian processes cannot be used to efficiently predict the outputs of the QNN via Bayesian statistics. Furthermore, our theorems imply that the concentration of measure phenomenon in Haar random QNNs is worse than previously thought, as we prove that expectation values and gradients concentrate as $\mathcal{O}\left(\frac{1}{e^d \sqrt{d}}\right)$. Finally, we discuss how our results improve our understanding of concentration in $t$-designs.

Bayesian inference and kernel methods are well established in machine learning. The neural network Gaussian process in particular provides a concept to investigate neural networks in the limit of infinitely wide hidden layers by using kernel and inference methods. Here we build upon this limit and provide a field-theoretic formalism which covers the generalization properties of infinitely wide networks. We systematically compute generalization properties of linear, non-linear, and deep non-linear networks for kernel matrices with heterogeneous entries. In contrast to currently employed spectral methods we derive the generalization properties from the statistical properties of the input, elucidating the interplay of input dimensionality, size of the training data set, and variability of the data. We show that data variability leads to a non-Gaussian action reminiscent of a ($\varphi^3+\varphi^4$)-theory. Using our formalism on a synthetic task and on MNIST we obtain a homogeneous kernel matrix approximation for the learning curve as well as corrections due to data variability which allow the estimation of the generalization properties and exact results for the bounds of the learning curves in the case of infinitely many training data points.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司