亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Renewed interest in the relationship between artificial and biological neural networks motivates the study of gradient-free methods. Considering the linear regression model with random design, we theoretically analyze in this work the biologically motivated (weight-perturbed) forward gradient scheme that is based on random linear combination of the gradient. If d denotes the number of parameters and k the number of samples, we prove that the mean squared error of this method converges for $k\gtrsim d^2\log(d)$ with rate $d^2\log(d)/k.$ Compared to the dimension dependence d for stochastic gradient descent, an additional factor $d\log(d)$ occurs.

相關內容

This study explores the intersection of information technology-based self-monitoring (ITSM) and emotional responses in chronic care. It critiques the lack of theoretical depth in current ITSM research and proposes a dynamic emotion process theory to understand ITSM's impact on users' emotions. Utilizing computational grounded theory and machine learning analysis of hypertension app reviews, the research seeks to extend emotion theory by examining ITSM stimuli and their influence on emotional episodes, moving beyond discrete emotion models towards a continuous, nuanced understanding of emotional responses.

Unraveling the emergence of collective learning in systems of coupled artificial neural networks points to broader implications for machine learning, neuroscience, and society. Here we introduce a minimal model that condenses several recent decentralized algorithms by considering a competition between two terms: the local learning dynamics in the parameters of each neural network unit, and a diffusive coupling among units that tends to homogenize the parameters of the ensemble. We derive an effective theory for linear networks to show that the coarse-grained behavior of our system is equivalent to a deformed Ginzburg-Landau model with quenched disorder. This framework predicts depth-dependent disorder-order-disorder phase transitions in the parameters' solutions that reveal a depth-delayed onset of a collective learning phase and a low-rank microscopic learning path. We validate the theory in coupled ensembles of realistic neural networks trained on the MNIST dataset under privacy constraints. Interestingly, experiments confirm that individual networks -- trained on private data -- can fully generalize to unseen data classes when the collective learning phase emerges. Our work establishes the physics of collective learning and contributes to the mechanistic interpretability of deep learning in decentralized settings.

Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.

We investigate the so-called "MMSE conjecture" from Guo et al. (2011) which asserts that two distributions on the real line with the same entropy along the heat flow coincide up to translation and symmetry. Our approach follows the path breaking contribution Ledoux (1995) which gave algebraic representations of the derivatives of said entropy in terms of multivariate polynomials. The main contributions in this note are (i) we obtain the leading terms in the polynomials from Ledoux (1995), and (ii) we provide new conditions on the source distributions ensuring the MMSE conjecture holds. As illustrating examples, our findings cover the cases of uniform and Rademacher distributions, for which previous results in the literature were inapplicable.

Fetal brain MRI is becoming an increasingly relevant complement to neurosonography for perinatal diagnosis, allowing fundamental insights into fetal brain development throughout gestation. However, uncontrolled fetal motion and heterogeneity in acquisition protocols lead to data of variable quality, potentially biasing the outcome of subsequent studies. We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control that is robust to domain shifts induced by the heterogeneity of clinical data. FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical MRI and combines them to predict experts' ratings using random forests. We validate our framework on a pioneeringly large and diverse dataset of more than 1600 manually rated fetal brain T2-weighted images from four clinical centers and 13 different scanners. Our study shows that FetMRQC's predictions generalize well to unseen data while being interpretable. FetMRQC is a step towards more robust fetal brain neuroimaging, which has the potential to shed new insights on the developing human brain.

Complete observation of event histories is often impossible due to sampling effects such as right-censoring and left-truncation, but also due to reporting delays and incomplete event adjudication. This is for example the case during interim stages of clinical trials and for health insurance claims. In this paper, we develop a parametric method that takes the aforementioned effects into account, treating the latter two as partially exogenous. The method, which takes the form of a two-step M-estimation procedure, is applicable to multistate models in general, including competing risks and recurrent event models. The effect of reporting delays is derived via thinning, extending existing results for Poisson models. To address incomplete event adjudication, we propose an imputed likelihood approach which, compared to existing methods, has the advantage of allowing for dependencies between the event history and adjudication processes as well as allowing for unreported events and multiple event types. We establish consistency and asymptotic normality under standard identifiability, integrability, and smoothness conditions, and we demonstrate the validity of the percentile bootstrap. Finally, a simulation study shows favorable finite sample performance of our method compared to other alternatives, while an application to disability insurance data illustrates its practical potential.

We introduce a semi-explicit time-stepping scheme of second order for linear poroelasticity satisfying a weak coupling condition. Here, semi-explicit means that the system, which needs to be solved in each step, decouples and hence improves the computational efficiency. The construction and the convergence proof are based on the connection to a differential equation with two time delays, namely one and two times the step size. Numerical experiments confirm the theoretical results and indicate the applicability to higher-order schemes.

We combine Kronecker products, and quantitative information flow, to give a novel formal analysis for the fine-grained verification of utility in complex privacy pipelines. The combination explains a surprising anomaly in the behaviour of utility of privacy-preserving pipelines -- that sometimes a reduction in privacy results also in a decrease in utility. We use the standard measure of utility for Bayesian analysis, introduced by Ghosh at al., to produce tractable and rigorous proofs of the fine-grained statistical behaviour leading to the anomaly. More generally, we offer the prospect of formal-analysis tools for utility that complement extant formal analyses of privacy. We demonstrate our results on a number of common privacy-preserving designs.

Percolation theory investigates systems of interconnected units, their resilience to damage and their propensity to propagation. For random networks we can solve the percolation problems analytically using the generating function formalism. Yet, with the introduction of higher order networks, the generating function calculations are becoming difficult to perform and harder to validate. Here, I illustrate the mapping of percolation in higher order networks to percolation in chygraphs. Chygraphs are defined as a set of complexes where complexes are hypergraphs with vertex sets in the set of complexes. In a previous work I reported the generating function formalism to percolation in chygraphs and obtained an analytical equation for the order parameter. Taking advantage of this result, I recapitulate analytical results for percolation problems in higher order networks and report extensions to more complex scenarios using symbolic calculations. The code for symbolic calculations can be found at //github.com/av2atgh/chygraph.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司