亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gender bias in political discourse is a significant problem on today's social media. Previous studies found that the gender of politicians indeed influences the content directed towards them by the general public. However, these works are particularly focused on the global north, which represents individualistic culture. Furthermore, they did not address whether there is gender bias even within the interaction between popular journalists and politicians in the global south. These understudied journalist-politician interactions are important (more so in collectivistic cultures like the global south) as they can significantly affect public sentiment and help set gender-biased social norms. In this work, using large-scale data from Indian Twitter we address this research gap. We curated a gender-balanced set of 100 most-followed Indian journalists on Twitter and 100 most-followed politicians. Then we collected 21,188 unique tweets posted by these journalists that mentioned these politicians. Our analysis revealed that there is a significant gender bias -- the frequency with which journalists mention male politicians vs. how frequently they mention female politicians is statistically significantly different ($p<<0.05$). In fact, median tweets from female journalists mentioning female politicians received ten times fewer likes than median tweets from female journalists mentioning male politicians. However, when we analyzed tweet content, our emotion score analysis and topic modeling analysis did not reveal any significant gender-based difference within the journalists' tweets towards politicians. Finally, we found a potential reason for the significant gender bias: the number of popular male Indian politicians is almost twice as large as the number of popular female Indian politicians, which might have resulted in the observed bias. We conclude by discussing the implications of this work.

相關內容

We study bias and discrimination in the context of Bumble, an online dating platform in India. Drawing on research in AI fairness and inclusion studies we analyze algorithmic bias and their propensity to reproduce bias. We conducted an experiment to identify and address the presence of bias in the matching algorithms Bumble pushes to its users in the form of profiles for potential dates in the real world. Dating apps like Bumble utilize algorithms that learn from user data to make recommendations. Even if the algorithm does not have intentions or consciousness, it is a system created and maintained by humans. We attribute moral agency of such systems to be compositely derived from algorithmic mediations, the design and utilization of these platforms. Developers, designers, and operators of dating platforms thus have a moral obligation to mitigate biases in the algorithms to create inclusive platforms that affirm diverse social identities.

Older adults habitually encounter misinformation on social media, but there is little knowledge about their experiences with it. In this study, we combined a qualitative survey (n=119) with in-depth interviews (n=21) to investigate how older adults in America conceptualize, discern, and contextualize social media misinformation. As misinformation on social media in the past was driven towards influencing voting outcomes, we were particularly interested to approach our study from a voting intention perspective. We found that 62% of the participants intending to vote Democrat saw a manipulative political purpose behind the spread of misinformation while only 5% of those intending to vote Republican believed misinformation has a political dissent purpose. Regardless of the voting intentions, most participants relied on source heuristics combined with fact-checking to discern truth from misinformation on social media. The biggest concern about the misinformation, among all the participants, was that it increasingly leads to biased reasoning influenced by personal values and feelings instead of reasoning based on objective evidence. The participants intending to vote Democrat were in 74% of the cases concerned that misinformation will cause escalation of extremism in the future, while those intending to vote Republican, were undecided, or planned to abstain were concerned that misinformation will further erode the trust in democratic institutions, specifically in the context of public health and free and fair elections. During our interviews, we found that 63% of the participants who intended to vote Republican, were fully aware and acknowledged that Republican or conservative voices often time speak misinformation, even though they are closely aligned to their political ideology.

Understanding how humans communicate and perceive narratives is important for media technology research and development. This is particularly important in current times when there are tools and algorithms that are easily available for amateur users to create high-quality content. Narrative media develops over time a set of recognizable patterns of features across similar artifacts. Genre is one such grouping of artifacts for narrative media with similar patterns, tropes, and story structures. While much work has been done on genre-based classifications in text and video, we present a novel approach to do a multi-modal analysis of genre based on comics and manga-style visual narratives. We present a systematic feature analysis of an annotated dataset that includes a variety of western and eastern visual books with annotations for high-level narrative patterns. We then present a detailed analysis of the contributions of high-level features to genre classification for this medium. We highlight some of the limitations and challenges of our existing computational approaches in modeling subjective labels. Our contributions to the community are: a dataset of annotated manga books, a multi-modal analysis of visual panels and text in a constrained and popular medium through high-level features, and a systematic process for incorporating subjective narrative patterns in computational models.

In recent years, the security issues of artificial intelligence have become increasingly prominent due to the rapid development of deep learning research and applications. Backdoor attack is an attack targeting the vulnerability of deep learning models, where hidden backdoors are activated by triggers embedded by the attacker, thereby outputting malicious predictions that may not align with the intended output for a given input. In this work, we propose a novel black-box backdoor attack based on machine unlearning. The attacker first augments the training set with carefully designed samples, including poison and mitigation data, to train a `benign' model. Then, the attacker posts unlearning requests for the mitigation samples to remove the impact of relevant data on the model, gradually activating the hidden backdoor. Since backdoors are implanted during the iterative unlearning process, it significantly increases the computational overhead of existing defense methods for backdoor detection or mitigation. To address this new security threat, we proposes two methods for detecting or mitigating such malicious unlearning requests. We conduct the experiment in both exact unlearning and approximate unlearning (i.e., SISA) settings. Experimental results indicate that: 1) our attack approach can successfully implant backdoor into the model, and sharding increases the difficult of attack; 2) our detection algorithms are effective in identifying the mitigation samples, while sharding reduces the effectiveness of our detection algorithms.

Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running time. For the vertex cover problem, there is a gap between theory and practice when it comes to understanding this tradeoff. On the one hand, it is known that it is NP-hard to approximate a minimum vertex cover within a factor of $\sqrt{2}$. On the other hand, a simple greedy algorithm yields close to optimal approximations in practice. A promising approach towards understanding this discrepancy is to recognize the differences between theoretical worst-case instances and real-world networks. Following this direction, we close the gap between theory and practice by providing an algorithm that efficiently computes nearly optimal vertex cover approximations on hyperbolic random graphs; a network model that closely resembles real-world networks in terms of degree distribution, clustering, and the small-world property. More precisely, our algorithm computes a $(1 + o(1))$-approximation, asymptotically almost surely, and has a running time of $\mathcal{O}(m \log(n))$. The proposed algorithm is an adaptation of the successful greedy approach, enhanced with a procedure that improves on parts of the graph where greedy is not optimal. This makes it possible to introduce a parameter that can be used to tune the tradeoff between approximation performance and running time. Our empirical evaluation on real-world networks shows that this allows for improving over the near-optimal results of the greedy approach.

In today's online advertising markets, a crucial requirement for an advertiser is to control her total expenditure within a time horizon under some budget. Among various budget control methods, throttling has emerged as a popular choice, managing an advertiser's total expenditure by selecting only a subset of auctions to participate in. This paper provides a theoretical panorama of a single advertiser's dynamic budget throttling process in repeated second-price auctions. We first establish a lower bound on the regret and an upper bound on the asymptotic competitive ratio for any throttling algorithm, respectively, when the advertiser's values are stochastic and adversarial. Regarding the algorithmic side, we propose the OGD-CB algorithm, which guarantees a near-optimal expected regret with stochastic values. On the other hand, when values are adversarial, we prove that this algorithm also reaches the upper bound on the asymptotic competitive ratio. We further compare throttling with pacing, another widely adopted budget control method, in repeated second-price auctions. In the stochastic case, we demonstrate that pacing is generally superior to throttling for the advertiser, supporting the well-known result that pacing is asymptotically optimal in this scenario. However, in the adversarial case, we give an exciting result indicating that throttling is also an asymptotically optimal dynamic bidding strategy. Our results bridge the gaps in theoretical research of throttling in repeated auctions and comprehensively reveal the ability of this popular budget-smoothing strategy.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network's prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features' information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.

Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司