亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We design a Quasi-Polynomial time deterministic approximation algorithm for computing the integral of a multi-dimensional separable function, supported by some underlying hyper-graph structure, appropriately defined. Equivalently, our integral is the partition function of a graphical model with continuous potentials. While randomized algorithms for high-dimensional integration are widely known, deterministic counterparts generally do not exist. We use the correlation decay method applied to the Riemann sum of the function to produce our algorithm. For our method to work, we require that the domain is bounded and the hyper-edge potentials are positive and bounded on the domain. We further assume that upper and lower bounds on the potentials separated by a multiplicative factor of $1 + O(1/\Delta^2)$, where $\Delta$ is the maximum degree of the graph. When $\Delta = 3$, our method works provided the upper and lower bounds are separated by a factor of at most $1.0479$. To the best of our knowledge, our algorithm is the first deterministic algorithm for high-dimensional integration of a continuous function, apart from the case of trivial product form distributions.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Despite their unprecedented success, DNNs are notoriously fragile to small shifts in data distribution, demanding effective testing techniques that can assess their dependability. Despite recent advances in DNN testing, there is a lack of systematic testing approaches that assess the DNN's capability to generalise and operate comparably beyond data in their training distribution. We address this gap with DeepKnowledge, a systematic testing methodology for DNN-based systems founded on the theory of knowledge generalisation, which aims to enhance DNN robustness and reduce the residual risk of 'black box' models. Conforming to this theory, DeepKnowledge posits that core computational DNN units, termed Transfer Knowledge neurons, can generalise under domain shift. DeepKnowledge provides an objective confidence measurement on testing activities of DNN given data distribution shifts and uses this information to instrument a generalisation-informed test adequacy criterion to check the transfer knowledge capacity of a test set. Our empirical evaluation of several DNNs, across multiple datasets and state-of-the-art adversarial generation techniques demonstrates the usefulness and effectiveness of DeepKnowledge and its ability to support the engineering of more dependable DNNs. We report improvements of up to 10 percentage points over state-of-the-art coverage criteria for detecting adversarial attacks on several benchmarks, including MNIST, SVHN, and CIFAR.

Efficient implementation of massive multiple-input-multiple-output (MIMO) transceivers is essential for the next-generation wireless networks. To reduce the high computational complexity of the massive MIMO transceiver, in this paper, we propose a new massive MIMO architecture using finite-precision arithmetic. First, we conduct the rounding error analysis and derive the lower bound of the achievable rate for single-input-multiple-output (SIMO) using maximal ratio combining (MRC) and multiple-input-single-output (MISO) systems using maximal ratio transmission (MRT) with finite-precision arithmetic. Then, considering the multi-user scenario, the rounding error analysis of zero-forcing (ZF) detection and precoding is derived by using the normal equations (NE) method. The corresponding lower bounds of the achievable sum rate are also derived and asymptotic analyses are presented. Built upon insights from these analyses and lower bounds, we propose a mixed-precision architecture for massive MIMO systems to offset performance gaps due to finite-precision arithmetic. The corresponding analysis of rounding errors and computational costs is obtained. Simulation results validate the derived bounds and underscore the superiority of the proposed mixed-precision architecture to the conventional structure.

We explore a very simple distribution of unitaries: random (binary) phase -- Hadamard -- random (binary) phase -- random computational-basis permutation. We show that this distribution is statistically indistinguishable from random Haar unitaries for any polynomial set of orthogonal input states (in any basis) with polynomial multiplicity. This shows that even though real-valued unitaries cannot be completely pseudorandom (Haug, Bharti, Koh, arXiv:2306.11677), we can still obtain some pseudorandom properties without giving up on the simplicity of a real-valued unitary. Our analysis shows that an even simpler construction: applying a random (binary) phase followed by a random computational-basis permutation, would suffice, assuming that the input is orthogonal and \emph{flat} (that is, has high min-entropy when measured in the computational basis). Using quantum-secure one-way functions (which imply quantum-secure pseudorandom functions and permutations), we obtain an efficient cryptographic instantiation of the above.

For doubly-selective channels, delay-Doppler (DD) modulation, mostly known as orthogonal time frequency space (OTFS) modulation, enables simultaneous compensation of delay and Doppler shifts. However, OTFS modulated signal has high peak-to-average power ratio (PAPR) because of its precoding operation performed over the DD domain. In order to deal with this problem, we propose a single-carrier transmission with delay-Doppler domain equalization (SC-DDE). In this system, the discretized time-domain SC signal is converted to the DD domain by discrete Zak transform (DZT) at the receiver side, followed by delay-Doppler domain equalization (DDE). Since equalization is performed in the DD domain, the SC-DDE receiver should acquire the channel delay-Doppler response. To this end, we introduce an embedded pilot-aided channel estimation scheme designed for SC-DDE, which does not affect the peak power property of transmitted signals. Through computer simulation, distribution of PAPR and bit error rate (BER) performance of the proposed system are compared with those of the conventional OTFS and SC with frequency-domain equalization (SC-FDE). As a result, our proposed SC-DDE significantly outperforms SC-FDE in terms of BER at the expense of additional computational complexity at the receiver. Furthermore, SC-DDE shows much lower PAPR than OTFS even though they achieve comparable coded BER performance.

Variational quantum algorithms are gaining attention as an early application of Noisy Intermediate-Scale Quantum (NISQ) devices. One of the main problems of variational methods lies in the phenomenon of Barren Plateaus, present in the optimization of variational parameters. Adding geometric inductive bias to the quantum models has been proposed as a potential solution to mitigate this problem, leading to a new field called Geometric Quantum Machine Learning. In this work, an equivariant architecture for variational quantum classifiers is introduced to create a label-invariant model for image classification with $C_4$ rotational label symmetry. The equivariant circuit is benchmarked against two different architectures, and it is experimentally observed that the geometric approach boosts the model's performance. Finally, a classical equivariant convolution operation is proposed to extend the quantum model for the processing of larger images, employing the resources available in NISQ devices.

We consider a family of two-valued "fully evaluated left-sequential logics" (FELs), of which Free FEL (defined by Staudt in 2012) is most distinguishing (weakest) and immune to atomic side effects. Next is Memorising FEL, in which evaluations of subexpressions are memorised. The following stronger logic is Conditional FEL (inspired by Guzm\'an and Squier's Conditional logic, 1990). The strongest FEL is static FEL, a sequential version of propositional logic. We use evaluation trees as a simple, intuitive semantics and provide complete axiomatisations for closed terms (left-sequential propositional expressions). For each FEL except Static FEL, we also define its three-valued version, with a constant U for "undefinedness" and again provide complete, independent aziomatisations, each one containing two additional axioms for U on top of the axiomatisations of the two-valued case. In this setting, the strongest FEL is equivalent to Bochvar's strict logic.

A data structure is called history independent if its internal memory representation does not reveal the history of operations applied to it, only its current state. In this paper we study history independence for concurrent data structures, and establish foundational possibility and impossibility results. We show that a large class of concurrent objects cannot be implemented from smaller base objects in a manner that is both wait-free and history independent; but if we settle for either lock-freedom instead of wait-freedom or for a weak notion of history independence, then at least one object in the class, multi-valued single-reader single-writer registers, can be implemented from smaller base objects, binary registers. On the other hand, using large base objects, we give a strong possibility result in the form of a universal construction: an object with $s$ possible states can be implemented in a wait-free, history-independent manner from compare-and-swap base objects that each have $O(s + 2^n)$ possible memory states, where $n$ is the number of processes in the system.

We study differentially private (DP) algorithms for recovering clusters in well-clustered graphs, which are graphs whose vertex set can be partitioned into a small number of sets, each inducing a subgraph of high inner conductance and small outer conductance. Such graphs have widespread application as a benchmark in the theoretical analysis of spectral clustering. We provide an efficient ($\epsilon$,$\delta$)-DP algorithm tailored specifically for such graphs. Our algorithm draws inspiration from the recent work of Chen et al., who developed DP algorithms for recovery of stochastic block models in cases where the graph comprises exactly two nearly-balanced clusters. Our algorithm works for well-clustered graphs with $k$ nearly-balanced clusters, and the misclassification ratio almost matches the one of the best-known non-private algorithms. We conduct experimental evaluations on datasets with known ground truth clusters to substantiate the prowess of our algorithm. We also show that any (pure) $\epsilon$-DP algorithm would result in substantial error.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.

北京阿比特科技有限公司