Understanding the structure, quantity, and type of snow in mountain landscapes is crucial for assessing avalanche safety, interpreting satellite imagery, building accurate hydrology models, and choosing the right pair of skis for your weekend trip. Currently, such characteristics of snowpack are measured using a combination of remote satellite imagery, weather stations, and laborious point measurements and descriptions provided by local forecasters, guides, and backcountry users. Here, we explore how characteristics of the top layer of snowpack could be estimated while skiing using strain sensors mounted to the top surface of an alpine ski. We show that with two strain gauges and an inertial measurement unit it is feasible to correctly assign one of three qualitative labels (powder, slushy, or icy/groomed snow) to each 10 second segment of a trajectory with 97% accuracy, independent of skiing style. Our algorithm uses a combination of a data-driven linear model of the ski-snow interaction, dimensionality reduction, and a Naive Bayes classifier. Comparisons of classifier performance between strain gauges suggest that the optimal placement of strain gauges is halfway between the binding and the tip/tail of the ski, in the cambered section just before the point where the unweighted ski would touch the snow surface. The ability to classify snow, potentially in real-time, using skis opens the door to applications that range from citizen science efforts to map snow surface characteristics in the backcountry, and develop skis with automated stiffness tuning based on the snow type.
A neural network consisting of piecewise affine building blocks, such as fully-connected layers and ReLU activations, is itself a piecewise affine function supported on a polyhedral complex. This complex has been previously studied to characterize theoretical properties of neural networks, but, in practice, extracting it remains a challenge due to its high combinatorial complexity. A natural idea described in previous works is to subdivide the regions via intersections with hyperplanes induced by each neuron. However, we argue that this view leads to computational redundancy. Instead of regions, we propose to subdivide edges, leading to a novel method for polyhedral complex extraction. A key to this are sign-vectors, which encode the combinatorial structure of the complex. Our approach allows to use standard tensor operations on a GPU, taking seconds for millions of cells on a consumer grade machine. Motivated by the growing interest in neural shape representation, we use the speed and differentiability of our method to optimize geometric properties of the complex. The code is available at //github.com/arturs-berzins/relu_edge_subdivision .
In sim-to-real Reinforcement Learning (RL), a policy is trained in a simulated environment and then deployed on the physical system. The main challenge of sim-to-real RL is to overcome the reality gap - the discrepancies between the real world and its simulated counterpart. Using general geometric representations, such as convex decomposition, triangular mesh, signed distance field can improve simulation fidelity, and thus potentially narrow the reality gap. Common to these approaches is that many contact points are generated for geometrically-complex objects, which slows down simulation and may cause numerical instability. Contact reduction methods address these issues by limiting the number of contact points, but the validity of these methods for sim-to-real RL has not been confirmed. In this paper, we present a contact reduction method with bounded stiffness to improve the simulation accuracy. Our experiments show that the proposed method critically enables training RL policy for a tight-clearance double pin insertion task and successfully deploying the policy on a rigid, position-controlled physical robot.
Force modulation of robotic manipulators has been extensively studied for several decades. However, it is not yet commonly used in safety-critical applications due to a lack of accurate interaction contact modeling and weak performance guarantees - a large proportion of them concerning the modulation of interaction forces. This study presents a high-level framework for simultaneous trajectory optimization and force control of the interaction between a manipulator and soft environments, which is prone to external disturbances. Sliding friction and normal contact force are taken into account. The dynamics of the soft contact model and the manipulator are simultaneously incorporated in a trajectory optimizer to generate desired motion and force profiles. A constrained optimization framework based on Alternative Direction Method of Multipliers (ADMM) has been employed to efficiently generate real-time optimal control inputs and high-dimensional state trajectories in a Model Predictive Control fashion. Experimental validation of the model performance is conducted on a soft substrate with known material properties using a Cartesian space force control mode. Results show a comparison of ground truth and real-time model-based contact force and motion tracking for multiple Cartesian motions in the valid range of the friction model. It is shown that a contact model-based motion planner can compensate for frictional forces and motion disturbances and improve the overall motion and force tracking accuracy. The proposed high-level planner has the potential to facilitate the automation of medical tasks involving the manipulation of compliant, delicate, and deformable tissues.
As intelligent trading agents based on reinforcement learning (RL) gain prevalence, it becomes more important to ensure that RL agents obey laws, regulations, and human behavioral expectations. There is substantial literature concerning the aversion of obvious catastrophes like crashing a helicopter or bankrupting a trading account, but little around the avoidance of subtle non-normative behavior for which there are examples, but no programmable definition. Such behavior may violate legal or regulatory, rather than physical or monetary, constraints. In this article, I consider a series of experiments in which an intelligent stock trading agent maximizes profit but may also inadvertently learn to spoof the market in which it participates. I first inject a hand-coded spoofing agent to a multi-agent market simulation and learn to recognize spoofing activity sequences. Then I replace the hand-coded spoofing trader with a simple profit-maximizing RL agent and observe that it independently discovers spoofing as the optimal strategy. Finally, I introduce a method to incorporate the recognizer as normative guide, shaping the agent's perceived rewards and altering its selected actions. The agent remains profitable while avoiding spoofing behaviors that would result in even higher profit. After presenting the empirical results, I conclude with some recommendations. The method should generalize to the reduction of any unwanted behavior for which a recognizer can be learned.
Replicating a user's pose from only wearable sensors is important for many AR/VR applications. Most existing methods for motion tracking avoid environment interaction apart from foot-floor contact due to their complex dynamics and hard constraints. However, in daily life people regularly interact with their environment, e.g. by sitting on a couch or leaning on a desk. Using Reinforcement Learning, we show that headset and controller pose, if combined with physics simulation and environment observations can generate realistic full-body poses even in highly constrained environments. The physics simulation automatically enforces the various constraints necessary for realistic poses, instead of manually specifying them as in many kinematic approaches. These hard constraints allow us to achieve high-quality interaction motions without typical artifacts such as penetration or contact sliding. We discuss three features, the environment representation, the contact reward and scene randomization, crucial to the performance of the method. We demonstrate the generality of the approach through various examples, such as sitting on chairs, a couch and boxes, stepping over boxes, rocking a chair and turning an office chair. We believe these are some of the highest-quality results achieved for motion tracking from sparse sensor with scene interaction.
The theme for CUI 2023 is 'designing for inclusive conversation', but who are CUIs really designed for? The field has its roots in computer science, which has a long acknowledged diversity problem. Inspired by studies mapping out the diversity of the CHI and voice assistant literature, we set out to investigate how these issues have (or have not) shaped the CUI literature. To do this we reviewed the 46 full-length research papers that have been published at CUI since its inception in 2019. After detailing the eight papers that engage with accessibility, social interaction, and performance of gender, we show that 90% of papers published at CUI with user studies recruit participants from Europe and North America (or do not specify). To complement existing work in the community towards diversity we discuss the factors that have contributed to the current status quo, and offer some initial suggestions as to how we as a CUI community can continue to improve. We hope that this will form the beginning of a wider discussion at the conference.
Quality Diversity (QD) algorithms have been proposed to search for a large collection of both diverse and high-performing solutions instead of a single set of local optima. While early QD algorithms view the objective and descriptor functions as black-box functions, novel tools have been introduced to use gradient information to accelerate the search and improve overall performance of those algorithms over continuous input spaces. However a broad range of applications involve discrete spaces, such as drug discovery or image generation. Exploring those spaces is challenging as they are combinatorially large and gradients cannot be used in the same manner as in continuous spaces. We introduce map-elites with a Gradient-Informed Discrete Emitter (ME-GIDE), which extends QD optimisation with differentiable functions over discrete search spaces. ME-GIDE leverages the gradient information of the objective and descriptor functions with respect to its discrete inputs to propose gradient-informed updates that guide the search towards a diverse set of high quality solutions. We evaluate our method on challenging benchmarks including protein design and discrete latent space illumination and find that our method outperforms state-of-the-art QD algorithms in all benchmarks.
The application of machine learning (ML) models to the analysis of optimization algorithms requires the representation of optimization problems using numerical features. These features can be used as input for ML models that are trained to select or to configure a suitable algorithm for the problem at hand. Since in pure black-box optimization information about the problem instance can only be obtained through function evaluation, a common approach is to dedicate some function evaluations for feature extraction, e.g., using random sampling. This approach has two key downsides: (1) It reduces the budget left for the actual optimization phase, and (2) it neglects valuable information that could be obtained from a problem-solver interaction. In this paper, we propose a feature extraction method that describes the trajectories of optimization algorithms using simple descriptive statistics. We evaluate the generated features for the task of classifying problem classes from the Black Box Optimization Benchmarking (BBOB) suite. We demonstrate that the proposed DynamoRep features capture enough information to identify the problem class on which the optimization algorithm is running, achieving a mean classification accuracy of 95% across all experiments.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.