ELO rating system is proposed by Arpad Elo, a Hungarian-American physics professor. Originally, it was proposed for the ranking system of chess players, but it was soon adapted to many other zero-sum sports fields like football, baseball, basketball , etc. Nowadays, besides the traditional sports games, computer/video games are also playing an important role in social lives especially among the teenagers. In most of the online competition games, player's performance is usually scored and recorded by the game's ranking system. Meanwhile, ranking system like ladder in Dota is not the only the metric for the players to evaluate their gaming strength, an ELO rating score based on players in-game performance is also a decisive factor for gamers' matching. Namely, the matching system will refer to players' score in the ranking system and performance score system to ensure the matched players will promisingly undergo a balanced game without one team dramatically overwhelming the other. ELO scheme and its variants in modern online competition games aims to ensuring the expected winning rate for each team approaches 50\%. However, ELO rating is also causing compliments among players. In this research, I will dig into the advantages and drawbacks of leveraging ELO ranking system in online games and why it is still employed by game developers despite the fact that it is disliked by most of the players. Also, a new effort based rating scheme will be proposed and compared with ELO scheme under the simulation environment.
Deep Learning(DL) and Machine Learning(ML) applications are rapidly increasing in recent days. Massive amounts of data are being generated over the internet which can derive meaningful results by the use of ML and DL algorithms. Hardware resources and open-source libraries have made it easy to implement these algorithms. Tensorflow and Pytorch are one of the leading frameworks for implementing ML projects. By using those frameworks, we can trace the operations executed on both GPU and CPU to analyze the resource allocations and consumption. This paper presents the time and memory allocation of CPU and GPU while training deep neural networks using Pytorch. This paper analysis shows that GPU has a lower running time as compared to CPU for deep neural networks. For a simpler network, there are not many significant improvements in GPU over the CPU.
Sustainability in high performance computing (HPC) is a major challenge not only for HPC centers and their users, but also for society as the climate goals become stricter. A lot of effort went into reducing the energy consumption of systems in general. Even though certain efforts to optimize the energy-efficiency of HPC workloads exist, most such efforts propose solutions targeting CPUs. As HPC systems shift more and more to GPU-centric architectures, simulation codes increasingly adopt GPU-programming models. This leads to an urgent need to increase the energy-efficiency of GPU-enabled codes. However, studies for reducing the energy consumption of large-scale simulations executing on CPUs and GPUs have received insufficient attention. In this work, we enable accurate power and energy measurements using an open-source toolkit across a range of CPU+GPU node architectures. We use this approach in SPH-EXA, an open-source GPU-centric astrophysical and cosmological simulation framework. We show that with simple code instrumentation, users can accurately measure power and energy related data about their application, beyond data provided by HPC systems alone. The accurate power and energy data provide significant insight to users for conducting energy-aware computational experiments and future energy-aware code development.
Nowadays, neuromorphic systems based on Spiking Neural Networks (SNNs) attract attentions of many researchers. There are many studies to improve performances of neuromorphic systems. These studies have been showing satisfactory results. To magnify performances of neuromorphic systems, developing actual neuromorphic systems is essential. For developing them, memristors play key role due to their useful characteristics. Although memristors are essential for actual neuromorphic systems, they are vulnerable to faults. However, there are few studies analyzing effects of fault elements in neuromorphic systems using memristors. To solve this problem, we analyze performance of a memristive neuromorphic system with fault elements changing fault ratios, types, and positions. We choose neurons and synapses to inject faults. We inject two types of faults to synapses: SA0 and SA1 faults. The fault synapses appear in random and important positions. Through our analysis, we discover the following four interesting points. First, memristive characteristics increase vulnerability of neuromorphic systems to fault elements. Second, fault neuron ratios reducing performance sharply exist. Third, performance degradation by fault synapses depends on fault types. Finally, SA1 fault synapses improve performance when they appear in important positions.
Fine-tuning a pre-trained model (such as BERT, ALBERT, RoBERTa, T5, GPT, etc.) has proven to be one of the most promising paradigms in recent NLP research. However, numerous recent works indicate that fine-tuning suffers from the instability problem, i.e., tuning the same model under the same setting results in significantly different performance. Many recent works have proposed different methods to solve this problem, but there is no theoretical understanding of why and how these methods work. In this paper, we propose a novel theoretical stability analysis of fine-tuning that focuses on two commonly used settings, namely, full fine-tuning and head tuning. We define the stability under each setting and prove the corresponding stability bounds. The theoretical bounds explain why and how several existing methods can stabilize the fine-tuning procedure. In addition to being able to explain most of the observed empirical discoveries, our proposed theoretical analysis framework can also help in the design of effective and provable methods. Based on our theory, we propose three novel strategies to stabilize the fine-tuning procedure, namely, Maximal Margin Regularizer (MMR), Multi-Head Loss (MHLoss), and Self Unsupervised Re-Training (SURT). We extensively evaluate our proposed approaches on 11 widely used real-world benchmark datasets, as well as hundreds of synthetic classification datasets. The experiment results show that our proposed methods significantly stabilize the fine-tuning procedure and also corroborate our theoretical analysis.
Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance the performance of these models, particularly on tasks that require reasoning capabilities. However, incorporating such rationales poses challenges in terms of scalability as this requires a high degree of human involvement. In this work, we present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY), which addresses the aforementioned challenges by automating the process of rationale generation. To this end, we leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions. More specifically, we construct automated natural language rationales that embed insights from post hoc explanations to provide corrective signals to LLMs. Extensive experimentation with real-world datasets demonstrates that our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks, including those where prior approaches which rely on human-annotated rationales such as Chain-of-Thought prompting fall short. Our work makes one of the first attempts at highlighting the potential of post hoc explanations as valuable tools for enhancing the effectiveness of LLMs. Furthermore, we conduct additional empirical analyses and ablation studies to demonstrate the impact of each of the components of AMPLIFY, which, in turn, leads to critical insights for refining in-context learning.
Modular and composable transfer learning is an emerging direction in the field of Parameter Efficient Fine-Tuning, as it enables neural networks to better organize various aspects of knowledge, leading to improved cross-task generalization. In this paper, we introduce a novel approach Customized Polytropon C-Poly that combines task-common skills and task-specific skills, while the skill parameters being highly parameterized using low-rank techniques. Each task is associated with a customizable number of exclusive specialized skills and also benefits from skills shared with peer tasks. A skill assignment matrix is jointly learned. To evaluate our approach, we conducted extensive experiments on the Super-NaturalInstructions and the SuperGLUE benchmarks. Our findings demonstrate that C-Poly outperforms fully-shared, task-specific, and skill-indistinguishable baselines, significantly enhancing the sample efficiency in multi-task learning scenarios.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.