亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent attacks encouraged public interest in physical security for railways. Knowing about and learning from previous attacks is necessary to secure against them. This paper presents a structured data set of physical attacks against railways. We analyze the data regarding the used means, the railway system's target component, the attacker type, and the geographical distribution of attacks. The results indicate a growing heterogeneity of observed attacks in the recent decade compared to the previous decades and centuries, making protecting railways more complex.

相關內容

Complex systems in science and engineering sometimes exhibit behavior that changes across different regimes. Traditional global models struggle to capture the full range of this complex behavior, limiting their ability to accurately represent the system. In response to this challenge, we propose a novel competitive learning approach for obtaining data-driven models of physical systems. The primary idea behind the proposed approach is to employ dynamic loss functions for a set of models that are trained concurrently on the data. Each model competes for each observation during training, allowing for the identification of distinct functional regimes within the dataset. To demonstrate the effectiveness of the learning approach, we coupled it with various regression methods that employ gradient-based optimizers for training. The proposed approach was tested on various problems involving model discovery and function approximation, demonstrating its ability to successfully identify functional regimes, discover true governing equations, and reduce test errors.

Wildlife camera trap images are being used extensively to investigate animal abundance, habitat associations, and behavior, which is complicated by the fact that experts must first classify the images manually. Artificial intelligence systems can take over this task but usually need a large number of already-labeled training images to achieve sufficient performance. This requirement necessitates human expert labor and poses a particular challenge for projects with few cameras or short durations. We propose a label-efficient learning strategy that enables researchers with small or medium-sized image databases to leverage the potential of modern machine learning, thus freeing crucial resources for subsequent analyses. Our methodological proposal is two-fold: (1) We improve current strategies of combining object detection and image classification by tuning the hyperparameters of both models. (2) We provide an active learning (AL) system that allows training deep learning models very efficiently in terms of required human-labeled training images. We supply a software package that enables researchers to use these methods directly and thereby ensure the broad applicability of the proposed framework in ecological practice. We show that our tuning strategy improves predictive performance. We demonstrate how the AL pipeline reduces the amount of pre-labeled data needed to achieve a specific predictive performance and that it is especially valuable for improving out-of-sample predictive performance. We conclude that the combination of tuning and AL increases predictive performance substantially. Furthermore, we argue that our work can broadly impact the community through the ready-to-use software package provided. Finally, the publication of our models tailored to European wildlife data enriches existing model bases mostly trained on data from Africa and North America.

Most digital bodily games focus on the body as they use movement as input. However, they also draw the player's focus away from the body as the output occurs on visual displays, creating a divide between the physical body and the virtual world. We propose a novel approach - the ''Body as a Play Material'' - where a player uses their body as both input and output to unify the physical body and the virtual world. To showcase this approach, we designed three games where a player uses one of their hands (input) to play against the other hand (output) by loaning control over its movements to an Electrical Muscle Stimulation (EMS) system. We conducted a thematic analysis on the data obtained from a field study with 12 participants to articulate four player experience themes. We discuss our results about how participants appreciated the engagement with the variety of bodily movements for play and the ambiguity of using their body as a play material. Ultimately, our work aims to unify the physical body and the virtual world.

Federated learning (FL) has emerged as a highly effective paradigm for privacy-preserving collaborative training among different parties. Unlike traditional centralized learning, which requires collecting data from each party, FL allows clients to share privacy-preserving information without exposing private datasets. This approach not only guarantees enhanced privacy protection but also facilitates more efficient and secure collaboration among multiple participants. Therefore, FL has gained considerable attention from researchers, promoting numerous surveys to summarize the related works. However, the majority of these surveys concentrate on methods sharing model parameters during the training process, while overlooking the potential of sharing other forms of local information. In this paper, we present a systematic survey from a new perspective, i.e., what to share in FL, with an emphasis on the model utility, privacy leakage, and communication efficiency. This survey differs from previous ones due to four distinct contributions. First, we present a new taxonomy of FL methods in terms of the sharing methods, which includes three categories of shared information: model sharing, synthetic data sharing, and knowledge sharing. Second, we analyze the vulnerability of different sharing methods to privacy attacks and review the defense mechanisms that provide certain privacy guarantees. Third, we conduct extensive experiments to compare the performance and communication overhead of various sharing methods in FL. Besides, we assess the potential privacy leakage through model inversion and membership inference attacks, while comparing the effectiveness of various defense approaches. Finally, we discuss potential deficiencies in current methods and outline future directions for improvement.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

Command, Control, Communication, and Intelligence (C3I) system is a kind of system-of-system that integrates computing machines, sensors, and communication networks. C3I systems are increasingly used in critical civil and military operations for achieving information superiority, assurance, and operational efficacy. C3I systems are no exception to the traditional systems facing widespread cyber-threats. However, the sensitive nature of the application domain (e.g., military operations) of C3I systems makes their security a critical concern. For instance, a cyber-attack on military installations can have detrimental impacts on national security. Therefore, in this paper, we review the state-of-the-art on the security of C3I systems. In particular, this paper aims to identify the security vulnerabilities, attack vectors, and countermeasures for C3I systems. We used the well-known systematic literature review method to select and review 77 studies on the security of C3I systems. Our review enabled us to identify 27 vulnerabilities, 22 attack vectors, and 62 countermeasures for C3I systems. This review has also revealed several areas for future research and identified key lessons with regards to C3I systems' security.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

北京阿比特科技有限公司