亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Belief propagation (BP) is a useful probabilistic inference algorithm for efficiently computing approximate marginal probability densities of random variables. However, in its standard form, BP is only applicable to the vector-type random variables with a fixed and known number of vector elements, while certain applications rely on RFSs with an unknown number of vector elements. In this paper, we develop BP rules for factor graphs defined on sequences of RFSs where each RFS has an unknown number of elements, with the intention of deriving novel inference methods for RFSs. Furthermore, we show that vector-type BP is a special case of set-type BP, where each RFS follows the Bernoulli process. To demonstrate the validity of developed set-type BP, we apply it to the PMB filter for SLAM, which naturally leads to new set-type BP-mapping, SLAM, multi-target tracking, and simultaneous localization and tracking filters. Finally, we explore the relationships between the vector-type BP and the proposed set-type BP PMB-SLAM implementations and show a performance gain of the proposed set-type BP PMB-SLAM filter in comparison with the vector-type BP-SLAM filter.

相關內容

即時定位與地圖構建(SLAM或Simultaneouslocalizationandmapping)是這樣一種技術:使得機器人和自動駕駛汽車等設備能在未知環境(沒有先驗知識的前提下)建立地圖,或者在已知環境(已給出該地圖的先驗知識)中能更新地圖,并保證這些設備能在同時追蹤它們的當前位置。

Stable partitioned techniques for simulating unsteady fluid-structure interaction (FSI) are known to be computationally expensive when high added-mass is involved. Multiple coupling strategies have been developed to accelerate these simulations, but often use predictors in the form of simple finite-difference extrapolations. In this work, we propose a non-intrusive data-driven predictor that couples reduced-order models of both the solid and fluid subproblems, providing an initial guess for the nonlinear problem of the next time step calculation. Each reduced order model is composed of a nonlinear encoder-regressor-decoder architecture and is equipped with an adaptive update strategy that adds robustness for extrapolation. In doing so, the proposed methodology leverages physics-based insights from high-fidelity solvers, thus establishing a physics-aware machine learning predictor. Using three strongly coupled FSI examples, this study demonstrates the improved convergence obtained with the new predictor and the overall computational speedup realized compared to classical approaches.

A recent line of research has established a novel desideratum for designing approximately-revenue-optimal multi-item mechanisms, namely the buy-many constraint. Under this constraint, prices for different allocations made by the mechanism must be subadditive, implying that the price of a bundle cannot exceed the sum of prices of individual items it contains. This natural constraint has enabled several positive results in multi-item mechanism design bypassing well-established impossibility results. Our work addresses the main open question from this literature of extending the buy-many constraint to multiple buyer settings and developing an approximation. We propose a new revenue benchmark for multi-buyer mechanisms via an ex-ante relaxation that captures several different ways of extending the buy-many constraint to the multi-buyer setting. Our main result is that a simple sequential item pricing mechanism with buyer-specific prices can achieve an $O(\log m)$ approximation to this revenue benchmark when all buyers have unit-demand or additive preferences over m items. This is the best possible as it directly matches the previous results for the single-buyer setting where no simple mechanism can obtain a better approximation. From a technical viewpoint we make two novel contributions. First, we develop a supply-constrained version of buy-many approximation for a single buyer. Second, we develop a multi-dimensional online contention resolution scheme for unit-demand buyers that may be of independent interest in mechanism design.

We perform detailed theoretical analysis of an expectation-maximization-based algorithm recently proposed in for solving a variation of the 3D registration problem, named multi-model 3D registration. Despite having shown superior empirical results, did not theoretically justify the conditions under which the EM approach converges to the ground truth. In this project, we aim to close this gap by establishing such conditions. In particular, the analysis revolves around the usage of probabilistic tail bounds that are developed and applied in various instances throughout the course. The problem studied in this project stands as another example, different from those seen in the course, in which tail-bounds help advance our algorithmic understanding in a probabilistic way. We provide self-contained background materials on 3D Registration

Laser powder bed fusion (LPBF) has shown promise for wide range of applications due to its ability to fabricate freeform geometries and generate a controlled microstructure. However, components generated by LPBF still possess sub-optimal mechanical properties due to the defects that are created during laser-material interactions. In this work, we investigate mechanism of spatter formation, using a high-fidelity modelling tool that was built to simulate the multi-physics phenomena in LPBF. The modelling tool have the capability to capture the 3D resolution of the meltpool and the spatter behavior. To understand spatter behavior and formation, we reveal its properties at ejection and evaluate its variation from the meltpool, the source where it is formed. The dataset of the spatter and the meltpool collected consist of 50 % spatter and 50 % melt pool samples, with features that include position components, velocity components, velocity magnitude, temperature, density and pressure. The relationship between the spatter and the meltpool were evaluated via correlation analysis and machine learning (ML) algorithms for classification tasks. Upon screening different ML algorithms on the dataset, a high accuracy was observed for all the ML models, with ExtraTrees having the highest at 96 % and KNN having the lowest at 94 %.

We propose an efficient semi-Lagrangian characteristic mapping method for solving the one+one-dimensional Vlasov-Poisson equations with high precision on a coarse grid. The flow map is evolved numerically and exponential resolution in linear time is obtained. Global third-order convergence in space and time is shown and conservation properties are assessed. For benchmarking, we consider linear and nonlinear Landau damping and the two-stream instability. We compare the results with a Fourier pseudo-spectral method. The extreme fine-scale resolution features are illustrated showing the method's capabilities to efficiently treat filamentation in fusion plasma simulations.

Comparative to conventional 2D interaction methods, virtual reality (VR) demonstrates an opportunity for unique interface and interaction design decisions. Currently, this poses a challenge when developing an accessible VR experience as existing interaction techniques may not be usable by all users. It was discovered that many traditional 2D interface interaction methods have been directly converted to work in a VR space with little alteration to the input mechanism, such as the use of a laser pointer designed to that of a traditional cursor. It is recognized that distanceindependent millimetres can support designers in developing interfaces that scale in virtual worlds. Relevantly, Fitts law states that as distance increases, user movements are increasingly slower and performed less accurately. In this paper we propose the use of a low pass filter, to normalize user input noise, alleviating fine motor requirements during ray-based interaction. A development study was conducted to understand the feasibility of implementing such a filter and explore its effects on end users experience. It demonstrates how an algorithm can provide an opportunity for a more accurate and consequently less frustrating experience by filtering and reducing involuntary hand tremors. Further discussion on existing VR design philosophies is also conducted, analysing evidence that supports multisensory feedback and psychological models. The completed study can be downloaded from GitHub.

We propose a novel discrete Poisson equation approach to estimate the statistical error of a broad class of numerical integrators for the underdamped Langevin dynamics. The statistical error refers to the mean square error of the estimator to the exact ensemble average with a finite number of iterations. With the proposed error analysis framework, we show that when the potential function $U(x)$ is strongly convex in $\mathbb R^d$ and the numerical integrator has strong order $p$, the statistical error is $O(h^{2p}+\frac1{Nh})$, where $h$ is the time step and $N$ is the number of iterations. Besides, this approach can be adopted to analyze integrators with stochastic gradients, and quantitative estimates can be derived as well. Our approach only requires the geometric ergodicity of the continuous-time underdamped Langevin dynamics, and relaxes the constraint on the time step.

Runtime analysis, as a branch of the theory of AI, studies how the number of iterations algorithms take before finding a solution (its runtime) depends on the design of the algorithm and the problem structure. Drift analysis is a state-of-the-art tool for estimating the runtime of randomised algorithms, such as evolutionary and bandit algorithms. Drift refers roughly to the expected progress towards the optimum per iteration. This paper considers the problem of deriving concentration tail-bounds on the runtime/regret of algorithms. It provides a novel drift theorem that gives precise exponential tail-bounds given positive, weak, zero and even negative drift. Previously, such exponential tail bounds were missing in the case of weak, zero, or negative drift. Our drift theorem can be used to prove a strong concentration of the runtime/regret of algorithms in AI. For example, we prove that the regret of the \rwab bandit algorithm is highly concentrated, while previous analyses only considered the expected regret. This means that the algorithm obtains the optimum within a given time frame with high probability, i.e. a form of algorithm reliability. Moreover, our theorem implies that the time needed by the co-evolutionary algorithm RLS-PD to obtain a Nash equilibrium in a \bilinear max-min-benchmark problem is highly concentrated. However, we also prove that the algorithm forgets the Nash equilibrium, and the time until this occurs is highly concentrated. This highlights a weakness in the RLS-PD which should be addressed by future work.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司