亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a hybridization technique for summation-by-parts finite difference methods with weak enforcement of interface and boundary conditions for second order, linear elliptic partial differential equations. The method is based on techniques from the hybridized discontinuous Galerkin literature where local and global problems are defined for the volume and trace grid points, respectively. By using a Schur complement technique the volume points can be eliminated, which drastically reduces the system size. We derive both the local and global problems, and show that the linear systems that must be solved are symmetric positive definite. The theoretical stability results are confirmed with numerical experiments as is the accuracy of the method.

相關內容

The rigidity of a matrix $A$ for target rank $r$ is the minimum number of entries of $A$ that need to be changed in order to obtain a matrix of rank at most $r$. At MFCS'77, Valiant introduced matrix rigidity as a tool to prove circuit lower bounds for linear functions and since then this notion received much attention and found applications in other areas of complexity theory. The problem of constructing an explicit family of matrices that are sufficiently rigid for Valiant's reduction (Valiant-rigid) still remains open. Moreover, since 2017 most of the long-studied candidates have been shown not to be Valiant-rigid. Some of those former candidates for rigidity are Kronecker products of small matrices. In a recent paper (STOC'21), Alman gave a general non-rigidity result for such matrices: he showed that if an $n\times n$ matrix $A$ (over any field) is a Kronecker product of $d\times d$ matrices $M_1,\dots, M_k$ (so $n=d^k$) $(d\ge 2)$ then changing only $n^{1+\varepsilon}$ entries of $A$ one can reduce its rank to $\le n^{1-\gamma}$, where $1/\gamma$ is roughly $2^d/\varepsilon^2$. In this note we improve this result in two directions. First, we do not require the matrices $M_i$ to have equal size. Second, we reduce $1/\gamma$ from exponential in $d$ to roughly $d^{3/2}/\varepsilon^2$ (where $d$ is the maximum size of the matrices $M_i$), and to nearly linear (roughly $d/\varepsilon^2$) for matrices $M_i$ of sizes within a constant factor of each other. As an application of our results we significantly expand the class of Hadamard matrices that are known not to be Valiant-rigid; these now include the Kronecker products of Paley-Hadamard matrices and Hadamard matrices of bounded size.

In this paper, a linearized semi-implicit finite difference scheme is proposed for solving the two-dimensional (2D) space fractional nonlinear Schr\"{o}dinger equation (SFNSE).The scheme has the property of mass and energy conservation on the discrete level, with an unconditional stability and a second order accuracy for both time and spatial variables. The main contribution of this paper is an optimal pointwise error estimate for the 2D SFNSE, which is rigorously established and proved for the first time. Moreover, a novel technique is proposed for dealing with the nonlinear term in the equation, which plays an essential role in the error estimation. Finally, the numerical results confirm well with the theoretical findings.

This paper develops high-order accurate entropy stable (ES) adaptive moving mesh finite difference schemes for the two- and three-dimensional special relativistic hydrodynamic (RHD) and magnetohydrodynamic (RMHD) equations, which is the high-order accurate extension of [J.M. Duan and H.Z. Tang, Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics, J. Comput. Phys., 426(2021), 109949]. The key point is the derivation of the higher-order accurate entropy conservative (EC) and ES finite difference schemes in the curvilinear coordinates by carefully dealing with the discretization of the temporal and spatial metrics and the Jacobian of the coordinate transformation and constructing the high-order EC and ES fluxes with the discrete metrics. The spatial derivatives in the source terms of the symmetrizable RMHD equations and the geometric conservation laws are discretized by using the linear combinations of the corresponding second-order case to obtain high-order accuracy. Based on the proposed high-order accurate EC schemes and the high-order accurate dissipation terms built on the WENO reconstruction, the high-order accurate ES schemes are obtained for the RHD and RMHD equations in the curvilinear coordinates. The mesh iteration redistribution or adaptive moving mesh strategy is built on the minimization of the mesh adaption functional. Several numerical tests are conducted to validate the shock-capturing ability and high efficiency of our high-order accurate ES adaptive moving mesh methods on the parallel computer system with the MPI communication. The numerical results show that the high-order accurate ES adaptive moving mesh schemes outperform both their counterparts on the uniform mesh and the second-order ES adaptive moving mesh schemes.

This paper studies the optimal rate of estimation in a finite Gaussian location mixture model in high dimensions without separation conditions. We assume that the number of components $k$ is bounded and that the centers lie in a ball of bounded radius, while allowing the dimension $d$ to be as large as the sample size $n$. Extending the one-dimensional result of Heinrich and Kahn \cite{HK2015}, we show that the minimax rate of estimating the mixing distribution in Wasserstein distance is $\Theta((d/n)^{1/4} + n^{-1/(4k-2)})$, achieved by an estimator computable in time $O(nd^2+n^{5/4})$. Furthermore, we show that the mixture density can be estimated at the optimal parametric rate $\Theta(\sqrt{d/n})$ in Hellinger distance and provide a computationally efficient algorithm to achieve this rate in the special case of $k=2$. Both the theoretical and methodological development rely on a careful application of the method of moments. Central to our results is the observation that the information geometry of finite Gaussian mixtures is characterized by the moment tensors of the mixing distribution, whose low-rank structure can be exploited to obtain a sharp local entropy bound.

Statistical signal processing applications usually require the estimation of some parameters of interest given a set of observed data. These estimates are typically obtained either by solving a multi-variate optimization problem, as in the maximum likelihood (ML) or maximum a posteriori (MAP) estimators, or by performing a multi-dimensional integration, as in the minimum mean squared error (MMSE) estimators. Unfortunately, analytical expressions for these estimators cannot be found in most real-world applications, and the Monte Carlo (MC) methodology is one feasible approach. MC methods proceed by drawing random samples, either from the desired distribution or from a simpler one, and using them to compute consistent estimators. The most important families of MC algorithms are Markov chain MC (MCMC) and importance sampling (IS). On the one hand, MCMC methods draw samples from a proposal density, building then an ergodic Markov chain whose stationary distribution is the desired distribution by accepting or rejecting those candidate samples as the new state of the chain. On the other hand, IS techniques draw samples from a simple proposal density, and then assign them suitable weights that measure their quality in some appropriate way. In this paper, we perform a thorough review of MC methods for the estimation of static parameters in signal processing applications. A historical note on the development of MC schemes is also provided, followed by the basic MC method and a brief description of the rejection sampling (RS) algorithm, as well as three sections describing many of the most relevant MCMC and IS algorithms, and their combined use.

High-order accurate summation-by-parts (SBP) finite difference (FD) methods constitute efficient numerical methods for simulating large-scale hyperbolic wave propagation problems. Traditional SBP FD operators that approximate first-order spatial derivatives with central-difference stencils often have spurious unresolved numerical wave-modes in their computed solutions. Recently derived high order accurate upwind SBP operators based upwind FD stencils have the potential to suppress these poisonous spurious wave-modes on marginally resolved computational grids. In this paper, we demonstrate that not all high order upwind SBP FD operators are applicable. Numerical dispersion relation analysis shows that odd-order upwind SBP FD operators also support spurious unresolved high-frequencies on marginally resolved meshes. Meanwhile, even-order upwind SBP FD operators (of order 2, 4, 6) do not support spurious unresolved high frequency wave modes and also have better numerical dispersion properties. We discretise the three space dimensional (3D) elastic wave equation on boundary-conforming curvilinear meshes. Using the energy method we prove that the semi-discrete approximation is stable and energy-conserving. We derive a priori error estimate and prove the convergence of the numerical error. Numerical experiments for the 3D elastic wave equation in complex geometries corroborate the theoretical analysis. Numerical simulations of the 3D elastic wave equation in heterogeneous media with complex non-planar free surface topography are given, including numerical simulations of community developed seismological benchmark problems. Computational results show that even-order upwind SBP FD operators are more efficient, robust and less prone to numerical dispersion errors on marginally resolved meshes when compared to the odd-order upwind and traditional SBP FD operators.

Stochastic gradient methods (SGMs) are predominant approaches for solving stochastic optimization. On smooth nonconvex problems, a few acceleration techniques have been applied to improve the convergence rate of SGMs. However, little exploration has been made on applying a certain acceleration technique to a stochastic subgradient method (SsGM) for nonsmooth nonconvex problems. In addition, few efforts have been made to analyze an (accelerated) SsGM with delayed derivatives. The information delay naturally happens in a distributed system, where computing workers do not coordinate with each other. In this paper, we propose an inertial proximal SsGM for solving nonsmooth nonconvex stochastic optimization problems. The proposed method can have guaranteed convergence even with delayed derivative information in a distributed environment. Convergence rate results are established to three classes of nonconvex problems: weakly-convex nonsmooth problems with a convex regularizer, composite nonconvex problems with a nonsmooth convex regularizer, and smooth nonconvex problems. For each problem class, the convergence rate is $O(1/K^{\frac{1}{2}})$ in the expected value of the gradient norm square, for $K$ iterations. In a distributed environment, the convergence rate of the proposed method will be slowed down by the information delay. Nevertheless, the slow-down effect will decay with the number of iterations for the latter two problem classes. We test the proposed method on three applications. The numerical results clearly demonstrate the advantages of using the inertial-based acceleration. Furthermore, we observe higher parallelization speed-up in asynchronous updates over the synchronous counterpart, though the former uses delayed derivatives.

There has been great interest in using tools from dynamical systems and numerical analysis of differential equations to understand and construct new optimization methods. In particular, recently a new paradigm has emerged that applies ideas from mechanics and geometric integration to obtain accelerated optimization methods on Euclidean spaces. This has important consequences given that accelerated methods are the workhorses behind many machine learning applications. In this paper we build upon these advances and propose a framework for dissipative and constrained Hamiltonian systems that is suitable for solving optimization problems on arbitrary smooth manifolds. Importantly, this allows us to leverage the well-established theory of symplectic integration to derive "rate-matching" dissipative integrators. This brings a new perspective to optimization on manifolds whereby convergence guarantees follow by construction from classical arguments in symplectic geometry and backward error analysis. Moreover, we construct two dissipative generalizations of leapfrog that are straightforward to implement: one for Lie groups and homogeneous spaces, that relies on the tractable geodesic flow or a retraction thereof, and the other for constrained submanifolds that is based on a dissipative generalization of the famous RATTLE integrator.

Deterministic solutions of the Boltzmann equation represent a real challenge due to the enormous computational effort which is required to produce such simulations and often stochastic methods such as Direct Simulation Monte Carlo (DSMC) are used instead due to their lower computational cost. In this work, we show that combining different technologies for the discretization of the velocity space and of the physical space coupled with suitable time integration techniques, it is possible to compute very precise deterministic approximate solutions of the Boltzmann model in different regimes, from extremely rarefied to dense fluids, with CFL conditions only driven by the hyperbolic transport term. To that aim, we develop modal Discontinuous Galerkin (DG) Implicit-Explicit Runge Kutta schemes (DG-IMEX-RK) and Implicit-Explicit Linear Multistep Methods based on Backward-Finite-Differences (DG-IMEX-BDF) for solving the Boltzmann model on multidimensional unstructured meshes. The solution of the Boltzmann collision operator is obtained through fast spectral methods, while the transport term in the governing equations is discretized relying on an explicit shock-capturing DG method on polygonal tessellations in the physical space. A novel class of WENO-type limiters, based on a shifting of the moments of inertia for each zone of the mesh, is used to control spurious oscillations of the DG solution across discontinuities. The order of convergence is numerically measured for different regimes and found to agree with the theoretical findings. The new methods are validated considering two-dimensional benchmark test cases typically used in the fluid dynamics community. A prototype engineering problem consisting of a supersonic flow around a NACA 0012 airfoil with space-time-dependent boundary conditions is also presented for which the pressure coefficients are measured.

We study the problem of recovering an atomic measure on the unit 2-sphere $\mathbb{S}^2$ given finitely many moments with respect to spherical harmonics. The analysis relies on the formulation of this problem as an optimization problem on the space of bounded Borel measures on $\mathbb{S}^2$ as it was considered by Y. de Castro & F. Gamboa and E. Cand\'es & C. Fernandez-Granda. We construct a dual certificate using a kernel given in an explicit form and make a concrete analysis of the interpolation problem. Numerical examples are provided and analyzed.

北京阿比特科技有限公司