亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Image-based systems have gained popularity owing to their capacity to provide rich manufacturing status information, low implementation costs and high acquisition rates. However, the complexity of the image background and various anomaly patterns pose new challenges to existing matrix decomposition methods, which are inadequate for modeling requirements. Moreover, the uncertainty of the anomaly can cause anomaly contamination problems, making the designed model and method highly susceptible to external disturbances. To address these challenges, we propose a two-stage strategy anomaly detection method that detects anomalies by identifying suspected patches (Ano-SuPs). Specifically, we propose to detect the patches with anomalies by reconstructing the input image twice: the first step is to obtain a set of normal patches by removing those suspected patches, and the second step is to use those normal patches to refine the identification of the patches with anomalies. To demonstrate its effectiveness, we evaluate the proposed method systematically through simulation experiments and case studies. We further identified the key parameters and designed steps that impact the model's performance and efficiency.

相關內容

Generating high-quality and person-generic visual dubbing remains a challenge. Recent innovation has seen the advent of a two-stage paradigm, decoupling the rendering and lip synchronization process facilitated by intermediate representation as a conduit. Still, previous methodologies rely on rough landmarks or are confined to a single speaker, thus limiting their performance. In this paper, we propose DiffDub: Diffusion-based dubbing. We first craft the Diffusion auto-encoder by an inpainting renderer incorporating a mask to delineate editable zones and unaltered regions. This allows for seamless filling of the lower-face region while preserving the remaining parts. Throughout our experiments, we encountered several challenges. Primarily, the semantic encoder lacks robustness, constricting its ability to capture high-level features. Besides, the modeling ignored facial positioning, causing mouth or nose jitters across frames. To tackle these issues, we employ versatile strategies, including data augmentation and supplementary eye guidance. Moreover, we encapsulated a conformer-based reference encoder and motion generator fortified by a cross-attention mechanism. This enables our model to learn person-specific textures with varying references and reduces reliance on paired audio-visual data. Our rigorous experiments comprehensively highlight that our ground-breaking approach outpaces existing methods with considerable margins and delivers seamless, intelligible videos in person-generic and multilingual scenarios.

This paper investigates the multiple testing problem for high-dimensional sparse binary sequences, motivated by the crowdsourcing problem in machine learning. We study the empirical Bayes approach for multiple testing on the high-dimensional Bernoulli model with a conjugate spike and uniform slab prior. We first show that the hard thresholding rule deduced from the posterior distribution is suboptimal. Consequently, the $\ell$-value procedure constructed using this posterior tends to be overly conservative in estimating the false discovery rate (FDR). We then propose two new procedures based on $\adj\ell$-values and $q$-values to correct this issue. Sharp frequentist theoretical results are obtained, demonstrating that both procedures can effectively control the FDR under sparsity. Numerical experiments are conducted to validate our theory in finite samples. To our best knowledge, this work provides the first uniform FDR control result in multiple testing for high-dimensional sparse binary data.

Assessing the environmental impact of the mineral extraction industry plays a critical role in understanding and mitigating the ecological consequences of extractive activities. This paper presents MineSegSAT, a model that presents a novel approach to predicting environmentally impacted areas of mineral extraction sites using the SegFormer deep learning segmentation architecture trained on Sentinel-2 data. The data was collected from non-overlapping regions over Western Canada in 2021 containing areas of land that have been environmentally impacted by mining activities that were identified from high-resolution satellite imagery in 2021. The SegFormer architecture, a state-of-the-art semantic segmentation framework, is employed to leverage its advanced spatial understanding capabilities for accurate land cover classification. We investigate the efficacy of loss functions including Dice, Tversky, and Lovasz loss respectively. The trained model was utilized for inference over the test region in the ensuing year to identify potential areas of expansion or contraction over these same periods. The Sentinel-2 data is made available on Amazon Web Services through a collaboration with Earth Daily Analytics which provides corrected and tiled analytics-ready data on the AWS platform. The model and ongoing API to access the data on AWS allow the creation of an automated tool to monitor the extent of disturbed areas surrounding known mining sites to ensure compliance with their environmental impact goals.

In prediction settings where data are collected over time, it is often of interest to understand both the importance of variables for predicting the response at each time point and the importance summarized over the time series. Building on recent advances in estimation and inference for variable importance measures, we define summaries of variable importance trajectories. These measures can be estimated and the same approaches for inference can be applied regardless of the choice of the algorithm(s) used to estimate the prediction function. We propose a nonparametric efficient estimation and inference procedure as well as a null hypothesis testing procedure that are valid even when complex machine learning tools are used for prediction. Through simulations, we demonstrate that our proposed procedures have good operating characteristics, and we illustrate their use by investigating the longitudinal importance of risk factors for suicide attempt.

To improve the predictability of complex computational models in the experimentally-unknown domains, we propose a Bayesian statistical machine learning framework utilizing the Dirichlet distribution that combines results of several imperfect models. This framework can be viewed as an extension of Bayesian stacking. To illustrate the method, we study the ability of Bayesian model averaging and mixing techniques to mine nuclear masses. We show that the global and local mixtures of models reach excellent performance on both prediction accuracy and uncertainty quantification and are preferable to classical Bayesian model averaging. Additionally, our statistical analysis indicates that improving model predictions through mixing rather than mixing of corrected models leads to more robust extrapolations.

In this paper we examine the effectiveness of several multi-arm bandit algorithms when used as a trust system to select agents to delegate tasks to. In contrast to existing work, we allow for recursive delegation to occur. That is, a task delegated to one agent can be delegated onwards by that agent, with further delegation possible until some agent finally executes the task. We show that modifications to the standard multi-arm bandit algorithms can provide improvements in performance in such recursive delegation settings.

During the development of large language models (LLMs), the scale and quality of the pre-training data play a crucial role in shaping LLMs' capabilities. To accelerate the research of LLMs, several large-scale datasets, such as C4 [1], Pile [2], RefinedWeb [3] and WanJuan [4], have been released to the public. However, most of the released corpus focus mainly on English, and there is still lack of complete tool-chain for extracting clean texts from web data. Furthermore, fine-grained information of the corpus, e.g. the quality of each text, is missing. To address these challenges, we propose in this paper a new complete tool-chain EvalWeb to extract Chinese clean texts from noisy web data. First, similar to previous work, manually crafted rules are employed to discard explicit noisy texts from the raw crawled web contents. Second, a well-designed evaluation model is leveraged to assess the remaining relatively clean data, and each text is assigned a specific quality score. Finally, we can easily utilize an appropriate threshold to select the high-quality pre-training data for Chinese. Using our proposed approach, we release the largest and latest large-scale high-quality Chinese web text ChineseWebText, which consists of 1.42 TB and each text is associated with a quality score, facilitating the LLM researchers to choose the data according to the desired quality thresholds. We also release a much cleaner subset of 600 GB Chinese data with the quality exceeding 90%.

We introduce Resilient Multiple Choice Learning (rMCL), an extension of the MCL approach for conditional distribution estimation in regression settings where multiple targets may be sampled for each training input. Multiple Choice Learning is a simple framework to tackle multimodal density estimation, using the Winner-Takes-All (WTA) loss for a set of hypotheses. In regression settings, the existing MCL variants focus on merging the hypotheses, thereby eventually sacrificing the diversity of the predictions. In contrast, our method relies on a novel learned scoring scheme underpinned by a mathematical framework based on Voronoi tessellations of the output space, from which we can derive a probabilistic interpretation. After empirically validating rMCL with experiments on synthetic data, we further assess its merits on the sound source localization problem, demonstrating its practical usefulness and the relevance of its interpretation.

This paper proposes two innovative vector transport operators, leveraging the Cayley transform, for the generalized Stiefel manifold embedded with a non-standard inner product. Specifically, it introduces the differentiated retraction and an approximation of the Cayley transform to the differentiated matrix exponential. These vector transports are demonstrated to satisfy the Ring-Wirth non-expansive condition under non-standard metrics while preserving isometry. Building upon the novel vector transport operators, we extend the modified Polak-Ribi$\acute{e}$re-Polyak (PRP) conjugate gradient method to the generalized Stiefel manifold. Under a non-monotone line search condition, we prove our algorithm globally converges to a stationary point. The efficiency of the proposed vector transport operators is empirically validated through numerical experiments involving generalized eigenvalue problems and canonical correlation analysis.

The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.

北京阿比特科技有限公司