Assessing the environmental impact of the mineral extraction industry plays a critical role in understanding and mitigating the ecological consequences of extractive activities. This paper presents MineSegSAT, a model that presents a novel approach to predicting environmentally impacted areas of mineral extraction sites using the SegFormer deep learning segmentation architecture trained on Sentinel-2 data. The data was collected from non-overlapping regions over Western Canada in 2021 containing areas of land that have been environmentally impacted by mining activities that were identified from high-resolution satellite imagery in 2021. The SegFormer architecture, a state-of-the-art semantic segmentation framework, is employed to leverage its advanced spatial understanding capabilities for accurate land cover classification. We investigate the efficacy of loss functions including Dice, Tversky, and Lovasz loss respectively. The trained model was utilized for inference over the test region in the ensuing year to identify potential areas of expansion or contraction over these same periods. The Sentinel-2 data is made available on Amazon Web Services through a collaboration with Earth Daily Analytics which provides corrected and tiled analytics-ready data on the AWS platform. The model and ongoing API to access the data on AWS allow the creation of an automated tool to monitor the extent of disturbed areas surrounding known mining sites to ensure compliance with their environmental impact goals.
Speech bandwidth extension (BWE) has demonstrated promising performance in enhancing the perceptual speech quality in real communication systems. Most existing BWE researches primarily focus on fixed upsampling ratios, disregarding the fact that the effective bandwidth of captured audio may fluctuate frequently due to various capturing devices and transmission conditions. In this paper, we propose a novel streaming adaptive bandwidth extension solution dubbed BAE-Net, which is suitable to handle the low-resolution speech with unknown and varying effective bandwidth. To address the challenges of recovering both the high-frequency magnitude and phase speech content blindly, we devise a dual-stream architecture that incorporates the magnitude inpainting and phase refinement. For potential applications on edge devices, this paper also introduces BAE-NET-lite, which is a lightweight, streaming and efficient framework. Quantitative results demonstrate the superiority of BAE-Net in terms of both performance and computational efficiency when compared with existing state-of-the-art BWE methods.
Despite their remarkable advancement in locomotion and manipulation, humanoid robots remain challenged by a lack of synchronized loco-manipulation control, hindering their full dynamic potential. In this work, we introduce a versatile and effective approach to controlling and generalizing dynamic locomotion and loco-manipulation on humanoid robots via a Force-and-moment-based Model Predictive Control (MPC). Specifically, we proposed a simplified rigid body dynamics (SRBD) model to take into account both humanoid and object dynamics for humanoid loco-manipulation. This linear dynamics model allows us to directly solve for ground reaction forces and moments via an MPC problem to achieve highly dynamic real-time control. Our proposed framework is highly versatile and generalizable. We introduce HECTOR (Humanoid for Enhanced ConTrol and Open-source Research) platform to demonstrate its effectiveness in hardware experiments. With the proposed framework, HECTOR can maintain exceptional balance during double-leg stance mode, even when subjected to external force disturbances to the body or foot location. In addition, it can execute 3-D dynamic walking on a variety of uneven terrains, including wet grassy surfaces, slopes, randomly placed wood slats, and stacked wood slats up to 6 cm high with the speed of 0.6 m/s. In addition, we have demonstrated dynamic humanoid loco-manipulation over uneven terrain, carrying 2.5 kg load. HECTOR simulations, along with the proposed control framework, are made available as an open-source project. (//github.com/DRCL-USC/Hector_Simulation).
Traffic accidents, being a significant contributor to both human casualties and property damage, have long been a focal point of research for many scholars in the field of traffic safety. However, previous studies, whether focusing on static environmental assessments or dynamic driving analyses, as well as pre-accident predictions or post-accident rule analyses, have typically been conducted in isolation. There has been a lack of an effective framework for developing a comprehensive understanding and application of traffic safety. To address this gap, this paper introduces AccidentGPT, a comprehensive accident analysis and prevention multi-modal large model. AccidentGPT establishes a multi-modal information interaction framework grounded in multi-sensor perception, thereby enabling a holistic approach to accident analysis and prevention in the field of traffic safety. Specifically, our capabilities can be categorized as follows: for autonomous driving vehicles, we provide comprehensive environmental perception and understanding to control the vehicle and avoid collisions. For human-driven vehicles, we offer proactive long-range safety warnings and blind-spot alerts while also providing safety driving recommendations and behavioral norms through human-machine dialogue and interaction. Additionally, for traffic police and management agencies, our framework supports intelligent and real-time analysis of traffic safety, encompassing pedestrian, vehicles, roads, and the environment through collaborative perception from multiple vehicles and road testing devices. The system is also capable of providing a thorough analysis of accident causes and liability after vehicle collisions. Our framework stands as the first large model to integrate comprehensive scene understanding into traffic safety studies.
Fusing measurements from multiple, heterogeneous, partial sources, observing a common object or process, poses challenges due to the increasing availability of numbers and types of sensors. In this work we propose, implement and validate an end-to-end computational pipeline in the form of a multiple-auto-encoder neural network architecture for this task. The inputs to the pipeline are several sets of partial observations, and the result is a globally consistent latent space, harmonizing (rigidifying, fusing) all measurements. The key enabler is the availability of multiple slightly perturbed measurements of each instance:, local measurement, "bursts", that allows us to estimate the local distortion induced by each instrument. We demonstrate the approach in a sequence of examples, starting with simple two-dimensional data sets and proceeding to a Wi-Fi localization problem and to the solution of a "dynamical puzzle" arising in spatio-temporal observations of the solutions of Partial Differential Equations.
The field of explainable artificial intelligence emerged in response to the growing need for more transparent and reliable models. However, using raw features to provide explanations has been disputed in several works lately, advocating for more user-understandable explanations. To address this issue, a wide range of papers proposing Concept-based eXplainable Artificial Intelligence (C-XAI) methods have arisen in recent years. Nevertheless, a unified categorization and precise field definition are still missing. This paper fills the gap by offering a thorough review of C-XAI approaches. We define and identify different concepts and explanation types. We provide a taxonomy identifying nine categories and propose guidelines for selecting a suitable category based on the development context. Additionally, we report common evaluation strategies including metrics, human evaluations and dataset employed, aiming to assist the development of future methods. We believe this survey will serve researchers, practitioners, and domain experts in comprehending and advancing this innovative field.
In spatial blind source separation the observed multivariate random fields are assumed to be mixtures of latent spatially dependent random fields. The objective is to recover latent random fields by estimating the unmixing transformation. Currently, the algorithms for spatial blind source separation can only estimate linear unmixing transformations. Nonlinear blind source separation methods for spatial data are scarce. In this paper we extend an identifiable variational autoencoder that can estimate nonlinear unmixing transformations to spatially dependent data and demonstrate its performance for both stationary and nonstationary spatial data using simulations. In addition, we introduce scaled mean absolute Shapley additive explanations for interpreting the latent components through nonlinear mixing transformation. The spatial identifiable variational autoencoder is applied to a geochemical dataset to find the latent random fields, which are then interpreted by using the scaled mean absolute Shapley additive explanations. Finally, we illustrate how the proposed method can be used as a pre-processing method when making multivariate predictions.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
PyPartMC is a Pythonic interface to PartMC, a stochastic, particle-resolved aerosol model implemented in Fortran. Both PyPartMC and PartMC are free, libre, and open-source. PyPartMC reduces the number of steps and mitigates the effort necessary to install and utilize the resources of PartMC. Without PyPartMC, setting up PartMC requires: working with UNIX shell, providing Fortran and C libraries, and performing standard Fortran and C source code configuration, compilation and linking. This can be challenging for those less experienced with computational research or those intending to use PartMC in environments where provision of UNIX tools is less straightforward (e.g., on Windows). PyPartMC offers a single-step installation/upgrade process of PartMC and all dependencies through the pip Python package manager on Linux, macOS, and Windows. This allows streamlined access to the unmodified and versioned Fortran internals of the PartMC codebase from both Python and other interoperable environments (e.g., Julia through PyCall). Consequently, users of PyPartMC can setup, run, process and visualize output of PartMC simulations using a single general-purpose programming language.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.
This paper reports Deep LOGISMOS approach to 3D tumor segmentation by incorporating boundary information derived from deep contextual learning to LOGISMOS - layered optimal graph image segmentation of multiple objects and surfaces. Accurate and reliable tumor segmentation is essential to tumor growth analysis and treatment selection. A fully convolutional network (FCN), UNet, is first trained using three adjacent 2D patches centered at the tumor, providing contextual UNet segmentation and probability map for each 2D patch. The UNet segmentation is then refined by Gaussian Mixture Model (GMM) and morphological operations. The refined UNet segmentation is used to provide the initial shape boundary to build a segmentation graph. The cost for each node of the graph is determined by the UNet probability maps. Finally, a max-flow algorithm is employed to find the globally optimal solution thus obtaining the final segmentation. For evaluation, we applied the method to pancreatic tumor segmentation on a dataset of 51 CT scans, among which 30 scans were used for training and 21 for testing. With Deep LOGISMOS, DICE Similarity Coefficient (DSC) and Relative Volume Difference (RVD) reached 83.2+-7.8% and 18.6+-17.4% respectively, both are significantly improved (p<0.05) compared with contextual UNet and/or LOGISMOS alone.