亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Biological evidence suggests that adaptation of synaptic delays on short to medium timescales plays an important role in learning in the brain. Inspired by biology, we explore the feasibility and power of using synaptic delays to solve challenging tasks even when the synaptic weights are not trained but kept at randomly chosen fixed values. We show that training ONLY the delays in feed-forward spiking networks using backpropagation can achieve performance comparable to the more conventional weight training. Moreover, further constraining the weights to ternary values does not significantly affect the networks' ability to solve the tasks using only the synaptic delays. We demonstrate the task performance of delay-only training on MNIST and Fashion-MNIST datasets in preliminary experiments. This demonstrates a new paradigm for training spiking neural networks and sets the stage for models that can be more efficient than the ones that use weights for computation.

相關內容

Medical studies for chronic disease are often interested in the relation between longitudinal risk factor profiles and individuals' later life disease outcomes. These profiles may typically be subject to intermediate structural changes due to treatment or environmental influences. Analysis of such studies may be handled by the joint model framework. However, current joint modeling does not consider structural changes in the residual variability of the risk profile nor consider the influence of subject-specific residual variability on the time-to-event outcome. In the present paper, we extend the joint model framework to address these two heterogeneous intra-individual variabilities. A Bayesian approach is used to estimate the unknown parameters and simulation studies are conducted to investigate the performance of the method. The proposed joint model is applied to the Framingham Heart Study to investigate the influence of anti-hypertensive medication on the systolic blood pressure variability together with its effect on the risk of developing cardiovascular disease. We show that anti-hypertensive medication is associated with elevated systolic blood pressure variability and increased variability elevates risk of developing cardiovascular disease.

Solving high-dimensional random parametric PDEs poses a challenging computational problem. It is well-known that numerical methods can greatly benefit from adaptive refinement algorithms, in particular when functional approximations in polynomials are computed as in stochastic Galerkin and stochastic collocations methods. This work investigates a residual based adaptive algorithm used to approximate the solution of the stationary diffusion equation with lognormal coefficients. It is known that the refinement procedure is reliable, but the theoretical convergence of the scheme for this class of unbounded coefficients remains a challenging open question. This paper advances the theoretical results by providing a quasi-error reduction results for the adaptive solution of the lognormal stationary diffusion problem. A computational example supports the theoretical statement.

Visual feedback plays a crucial role in the process of amputation patients completing grasping in the field of prosthesis control. However, for blind and visually impaired (BVI) amputees, the loss of both visual and grasping abilities makes the "easy" reach-and-grasp task a feasible challenge. In this paper, we propose a novel multi-sensory prosthesis system helping BVI amputees with sensing, navigation and grasp operations. It combines modules of voice interaction, environmental perception, grasp guidance, collaborative control, and auditory/tactile feedback. In particular, the voice interaction module receives user instructions and invokes other functional modules according to the instructions. The environmental perception and grasp guidance module obtains environmental information through computer vision, and feedbacks the information to the user through auditory feedback modules (voice prompts and spatial sound sources) and tactile feedback modules (vibration stimulation). The prosthesis collaborative control module obtains the context information of the grasp guidance process and completes the collaborative control of grasp gestures and wrist angles of prosthesis in conjunction with the user's control intention in order to achieve stable grasp of various objects. This paper details a prototyping design (named viia-hand) and presents its preliminary experimental verification on healthy subjects completing specific reach-and-grasp tasks. Our results showed that, with the help of our new design, the subjects were able to achieve a precise reach and reliable grasp of the target objects in a relatively cluttered environment. Additionally, the system is extremely user-friendly, as users can quickly adapt to it with minimal training.

Sleep is the primary mean of recovery from accumulated fatigue and thus plays a crucial role in fostering people's mental and physical well-being. Sleep quality monitoring systems are often implemented using wearables that leverage their sensing capabilities to provide sleep behaviour insights and recommendations to users. Building models to estimate sleep quality from sensor data is a challenging task, due to the variability of both physiological data, perception of sleep quality, and the daily routine across users. This challenge gauges the need for a comprehensive dataset that includes information about the daily behaviour of users, physiological signals as well as the perceived sleep quality. In this paper, we try to narrow this gap by proposing Bilateral Heart rate from multiple devices and body positions for Sleep measurement (BiHeartS) dataset. The dataset is collected in the wild from 10 participants for 30 consecutive nights. Both research-grade and commercial wearable devices are included in the data collection campaign. Also, comprehensive self-reports are collected about the sleep quality and the daily routine.

The paradigm of large-scale pre-training followed by downstream fine-tuning has been widely employed in various object detection algorithms. In this paper, we reveal discrepancies in data, model, and task between the pre-training and fine-tuning procedure in existing practices, which implicitly limit the detector's performance, generalization ability, and convergence speed. To this end, we propose AlignDet, a unified pre-training framework that can be adapted to various existing detectors to alleviate the discrepancies. AlignDet decouples the pre-training process into two stages, i.e., image-domain and box-domain pre-training. The image-domain pre-training optimizes the detection backbone to capture holistic visual abstraction, and box-domain pre-training learns instance-level semantics and task-aware concepts to initialize the parts out of the backbone. By incorporating the self-supervised pre-trained backbones, we can pre-train all modules for various detectors in an unsupervised paradigm. As depicted in Figure 1, extensive experiments demonstrate that AlignDet can achieve significant improvements across diverse protocols, such as detection algorithm, model backbone, data setting, and training schedule. For example, AlignDet improves FCOS by 5.3 mAP, RetinaNet by 2.1 mAP, Faster R-CNN by 3.3 mAP, and DETR by 2.3 mAP under fewer epochs.

Efficient RGB-D semantic segmentation has received considerable attention in mobile robots, which plays a vital role in analyzing and recognizing environmental information. According to previous studies, depth information can provide corresponding geometric relationships for objects and scenes, but actual depth data usually exist as noise. To avoid unfavorable effects on segmentation accuracy and computation, it is necessary to design an efficient framework to leverage cross-modal correlations and complementary cues. In this paper, we propose an efficient lightweight encoder-decoder network that reduces the computational parameters and guarantees the robustness of the algorithm. Working with channel and spatial fusion attention modules, our network effectively captures multi-level RGB-D features. A globally guided local affinity context module is proposed to obtain sufficient high-level context information. The decoder utilizes a lightweight residual unit that combines short- and long-distance information with a few redundant computations. Experimental results on NYUv2, SUN RGB-D, and Cityscapes datasets show that our method achieves a better trade-off among segmentation accuracy, inference time, and parameters than the state-of-the-art methods. The source code will be at //github.com/MVME-HBUT/SGACNet

Characterizing shapes of high-dimensional objects via Ricci curvatures plays a critical role in many research areas in mathematics and physics. However, even though several discretizations of Ricci curvatures for discrete combinatorial objects such as networks have been proposed and studied by mathematicians, the computational complexity aspects of these discretizations have escaped the attention of theoretical computer scientists to a large extent. In this paper, we study one such discretization, namely the Ollivier-Ricci curvature, from the perspective of efficient computation by fine-grained reductions and local query-based algorithms. Our main contributions are the following. (a) We relate our curvature computation problem to minimum weight perfect matching problem on complete bipartite graphs via fine-grained reduction. (b) We formalize the computational aspects of the curvature computation problems in suitable frameworks so that they can be studied by researchers in local algorithms. (c) We provide the first known lower and upper bounds on queries for query-based algorithms for the curvature computation problems in our local algorithms framework. En route, we also illustrate a localized version of our fine-grained reduction. We believe that our results bring forth an intriguing set of research questions, motivated both in theory and practice, regarding designing efficient algorithms for curvatures of objects.

Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.

In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training (VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks. Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is the first survey on VLP. We hope that this survey can shed light on future research in the VLP field.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

北京阿比特科技有限公司