Decentralized Federated Learning (DFL), a paradigm for managing big data in a privacy-preserved manner, is still vulnerable to poisoning attacks where malicious clients tamper with data or models. Current defense methods often assume Independently and Identically Distributed (IID) data, which is unrealistic in real-world applications. In non-IID contexts, existing defensive strategies face challenges in distinguishing between models that have been compromised and those that have been trained on heterogeneous data distributions, leading to diminished efficacy. In response, this paper proposes a framework that employs the Moving Target Defense (MTD) approach to bolster the robustness of DFL models. By continuously modifying the attack surface of the DFL system, this framework aims to mitigate poisoning attacks effectively. The proposed MTD framework includes both proactive and reactive modes, utilizing a reputation system that combines metrics of model similarity and loss, alongside various defensive techniques. Comprehensive experimental evaluations indicate that the MTD-based mechanism significantly mitigates a range of poisoning attack types across multiple datasets with different topologies.
We show that the epidemiological Renormalization Group (eRG) framework is a useful and minimal tool to effectively describe the temporal evolution of the Dengue multi-wave pandemics. We test the framework on the Dengue history of several countries located in both Latin America and Asia. We also observe a strong correlation between the total number of infected individuals and the changes in the local temperature. Our results further support the expectation that global warming is bound to increase the cases of Dengue worldwide. We then move to investigate, via the eRG, the recent outbreak in Fano, Italy and offer our projections.
Passive non-line-of-sight (NLOS) imaging has witnessed rapid development in recent years, due to its ability to image objects that are out of sight. The light transport condition plays an important role in this task since changing the conditions will lead to different imaging models. Existing learning-based NLOS methods usually train independent models for different light transport conditions, which is computationally inefficient and impairs the practicality of the models. In this work, we propose NLOS-LTM, a novel passive NLOS imaging method that effectively handles multiple light transport conditions with a single network. We achieve this by inferring a latent light transport representation from the projection image and using this representation to modulate the network that reconstructs the hidden image from the projection image. We train a light transport encoder together with a vector quantizer to obtain the light transport representation. To further regulate this representation, we jointly learn both the reconstruction network and the reprojection network during training. A set of light transport modulation blocks is used to modulate the two jointly trained networks in a multi-scale way. Extensive experiments on a large-scale passive NLOS dataset demonstrate the superiority of the proposed method. The code is available at //github.com/JerryOctopus/NLOS-LTM.
Foundational Vision-Language models such as CLIP have exhibited impressive generalization in downstream tasks. However, CLIP suffers from a two-level misalignment issue, i.e., task misalignment and data misalignment, when adapting to specific tasks. Soft prompt tuning has mitigated the task misalignment, yet the data misalignment remains a challenge. To analyze the impacts of the data misalignment, we revisit the pre-training and adaptation processes of CLIP and develop a structural causal model. We discover that while we expect to capture task-relevant information for downstream tasks accurately, the task-irrelevant knowledge impacts the prediction results and hampers the modeling of the true relationships between the images and the predicted classes. As task-irrelevant knowledge is unobservable, we leverage the front-door adjustment and propose Causality-Guided Semantic Decoupling and Classification (CDC) to mitigate the interference of task-irrelevant knowledge. Specifically, we decouple semantics contained in the data of downstream tasks and perform classification based on each semantic. Furthermore, we employ the Dempster-Shafer evidence theory to evaluate the uncertainty of each prediction generated by diverse semantics. Experiments conducted in multiple different settings have consistently demonstrated the effectiveness of CDC.
Graph diffusion, which iteratively propagates real-valued substances among the graph, is used in numerous graph/network-involved applications. However, releasing diffusion vectors may reveal sensitive linking information in the data such as transaction information in financial network data. However, protecting the privacy of graph data is challenging due to its interconnected nature. This work proposes a novel graph diffusion framework with edge-level differential privacy guarantees by using noisy diffusion iterates. The algorithm injects Laplace noise per diffusion iteration and adopts a degree-based thresholding function to mitigate the high sensitivity induced by low-degree nodes. Our privacy loss analysis is based on Privacy Amplification by Iteration (PABI), which to our best knowledge, is the first effort that analyzes PABI with Laplace noise and provides relevant applications. We also introduce a novel Infinity-Wasserstein distance tracking method, which tightens the analysis of privacy leakage and makes PABI more applicable in practice. We evaluate this framework by applying it to Personalized Pagerank computation for ranking tasks. Experiments on real-world network data demonstrate the superiority of our method under stringent privacy conditions.
Smart metering networks are increasingly susceptible to cyber threats, where false data injection (FDI) appears as a critical attack. Data-driven-based machine learning (ML) methods have shown immense benefits in detecting FDI attacks via data learning and prediction abilities. Literature works have mostly focused on centralized learning and deploying FDI attack detection models at the control center, which requires data collection from local utilities like meters and transformers. However, this data sharing may raise privacy concerns due to the potential disclosure of household information like energy usage patterns. This paper proposes a new privacy-preserved FDI attack detection by developing an efficient federated learning (FL) framework in the smart meter network with edge computing. Distributed edge servers located at the network edge run an ML-based FDI attack detection model and share the trained model with the grid operator, aiming to build a strong FDI attack detection model without data sharing. Simulation results demonstrate the efficiency of our proposed FL method over the conventional method without collaboration.
A wide variety of queueing systems can be naturally modeled as infinite-state Markov Decision Processes (MDPs). In the reinforcement learning (RL) context, a variety of algorithms have been developed to learn and optimize these MDPs. At the heart of many popular policy-gradient based learning algorithms, such as natural actor-critic, TRPO, and PPO, lies the Natural Policy Gradient (NPG) policy optimization algorithm. Convergence results for these RL algorithms rest on convergence results for the NPG algorithm. However, all existing results on the convergence of the NPG algorithm are limited to finite-state settings. We study a general class of queueing MDPs, and prove a $O(1/\sqrt{T})$ convergence rate for the NPG algorithm, if the NPG algorithm is initialized with the MaxWeight policy. This is the first convergence rate bound for the NPG algorithm for a general class of infinite-state average-reward MDPs. Moreover, our result applies to a beyond the queueing setting to any countably-infinite MDP satisfying certain mild structural assumptions, given a sufficiently good initial policy. Key to our result are state-dependent bounds on the relative value function achieved by the iterate policies of the NPG algorithm.
Many real-world applications of tabular data involve using historic events to predict properties of new ones, for example whether a credit card transaction is fraudulent or what rating a customer will assign a product on a retail platform. Existing approaches to event prediction include costly, brittle, and application-dependent techniques such as time-aware positional embeddings, learned row and field encodings, and oversampling methods for addressing class imbalance. Moreover, these approaches often assume specific use-cases, for example that we know the labels of all historic events or that we only predict a pre-specified label and not the data's features themselves. In this work, we propose a simple but flexible baseline using standard autoregressive LLM-style transformers with elementary positional embeddings and a causal language modeling objective. Our baseline outperforms existing approaches across popular datasets and can be employed for various use-cases. We demonstrate that the same model can predict labels, impute missing values, or model event sequences.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.
As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.