亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a method to first identify users who have the most negative impact on the overall network performance, and then offload them to an orthogonal channel. The feasibility of such an approach is verified using real-world traces, network simulations, and a lab experiment that employs multi-homed wireless stations. In our experiment, as offload target, we employ LiFi IR transceivers, and as the primary network we consider a typical Enterprise Wi-Fi setup. We found that a limited number of users can impact the overall experience of the Wi-Fi network negatively, hence motivating targeted offloading. In our simulations and experiments we saw that the proposed solution can improve the collision probability with 82% and achieve a 61 percentage point air utilization improvement compared to random offloading, respectively.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Trajectory optimization is a powerful tool for robot motion planning and control. State-of-the-art general-purpose nonlinear programming solvers are versatile, handle constraints effectively and provide a high numerical robustness, but they are slow because they do not fully exploit the optimal control problem structure at hand. Existing structure-exploiting solvers are fast, but they often lack techniques to deal with nonlinearity or rely on penalty methods to enforce (equality or inequality) path constraints. This work presents Fatrop: a trajectory optimization solver that is fast and benefits from the salient features of general-purpose nonlinear optimization solvers. The speed-up is mainly achieved through the integration of a specialized linear solver, based on a Riccati recursion that is generalized to also support stagewise equality constraints. To demonstrate the algorithm's potential, it is benchmarked on a set of robot problems that are challenging from a numerical perspective, including problems with a minimum-time objective and no-collision constraints. The solver is shown to solve problems for trajectory generation of a quadrotor, a robot manipulator and a truck-trailer problem in a few tens of milliseconds. The algorithm's C++-code implementation accompanies this work as open source software, released under the GNU Lesser General Public License (LGPL). This software framework may encourage and enable the robotics community to use trajectory optimization in more challenging applications.

We propose a novel scale-invariant version of the mean and variance multi-level Monte Carlo estimate. The computation cost across grid levels is optimised using a normalized error based on t-statistics. By doing so, the algorithm achieves convergence independent of the physical scale at which the estimate is computed. The effectiveness of this algorithm is demonstrated through testing on a linear elastic example, where material uncertainty incorporating both heterogeneity and anisotropy is considered in the constitutive law.

Data augmentation is a powerful technique to improve performance in applications such as image and text classification tasks. Yet, there is little rigorous understanding of why and how various augmentations work. In this work, we consider a family of linear transformations and study their effects on the ridge estimator in an over-parametrized linear regression setting. First, we show that transformations that preserve the labels of the data can improve estimation by enlarging the span of the training data. Second, we show that transformations that mix data can improve estimation by playing a regularization effect. Finally, we validate our theoretical insights on MNIST. Based on the insights, we propose an augmentation scheme that searches over the space of transformations by how uncertain the model is about the transformed data. We validate our proposed scheme on image and text datasets. For example, our method outperforms random sampling methods by 1.24% on CIFAR-100 using Wide-ResNet-28-10. Furthermore, we achieve comparable accuracy to the SoTA Adversarial AutoAugment on CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets.

In this paper, we introduce a novel open source toolbox for design optimization in Soft Robotics. We consider that design optimization is an important trend in Soft Robotics that is changing the way in which designs will be shared and adopted. We evaluate this toolbox on the example of a cable-driven, sensorized soft finger. For devices like these, that feature both actuation and sensing, the need for multi-objective optimization capabilities naturally arises, because at the very least, a trade-off between these two aspects has to be found. Thus, multi-objective optimization capability is one of the central features of the proposed toolbox. We evaluate the optimization of the soft finger and show that extreme points of the optimization trade-off between sensing and actuation are indeed far apart on actually fabricated devices for the established metrics. Furthermore, we provide an in depth analysis of the sim-to-real behavior of the example, taking into account factors such as the mesh density in the simulation, mechanical parameters and fabrication tolerances.

Constraint programming is known for being an efficient approach for solving combinatorial problems. Important design choices in a solver are the branching heuristics, which are designed to lead the search to the best solutions in a minimum amount of time. However, developing these heuristics is a time-consuming process that requires problem-specific expertise. This observation has motivated many efforts to use machine learning to automatically learn efficient heuristics without expert intervention. To the best of our knowledge, it is still an open research question. Although several generic variable-selection heuristics are available in the literature, the options for a generic value-selection heuristic are more scarce. In this paper, we propose to tackle this issue by introducing a generic learning procedure that can be used to obtain a value-selection heuristic inside a constraint programming solver. This has been achieved thanks to the combination of a deep Q-learning algorithm, a tailored reward signal, and a heterogeneous graph neural network architecture. Experiments on graph coloring, maximum independent set, and maximum cut problems show that our framework is able to find better solutions close to optimality without requiring a large amounts of backtracks while being generic.

In this paper, we present DSN (Deep Serial Number), a simple yet effective watermarking algorithm designed specifically for deep neural networks (DNNs). Unlike traditional methods that incorporate identification signals into DNNs, our approach explores a novel Intellectual Property (IP) protection mechanism for DNNs, effectively thwarting adversaries from using stolen networks. Inspired by the success of serial numbers in safeguarding conventional software IP, we propose the first implementation of serial number embedding within DNNs. To achieve this, DSN is integrated into a knowledge distillation framework, in which a private teacher DNN is initially trained. Subsequently, its knowledge is distilled and imparted to a series of customized student DNNs. Each customer DNN functions correctly only upon input of a valid serial number. Experimental results across various applications demonstrate DSN's efficacy in preventing unauthorized usage without compromising the original DNN performance. The experiments further show that DSN is resistant to different categories of watermark attacks.

Auto-regressive moving-average (ARMA) models are ubiquitous forecasting tools. Parsimony in such models is highly valued for their interpretability and computational tractability, and as such the identification of model orders remains a fundamental task. We propose a novel method of ARMA order identification through projection predictive inference, which benefits from improved stability through the use of a reference model. The procedure consists of two steps: in the first, the practitioner incorporates their understanding of underlying data-generating process into a reference model, which we latterly project onto possibly parsimonious submodels. These submodels are optimally inferred to best replicate the predictive performance of the reference model. We further propose a search heuristic amenable to the ARMA framework. We show that the submodels selected by our procedure exhibit predictive performance at least as good as those chosen by AIC over simulated and real-data experiments, and in some cases out-perform the latter. Finally we show that our procedure is robust to noise, and scales well to larger data.

The advent of 5G New Radio (NR) technology has revolutionized the landscape of wireless communication, offering various enhancements such as elevated system capacity, improved spectrum efficiency, and higher data transmission rates. To achieve these benefits, 5G has implemented the Ultra-Dense Network (UDN) architecture, characterized by the deployment of numerous small general Node B (gNB) units. While this approach boosts system capacity and frequency reuse, it also raises concerns such as increased signal interference, longer handover times, and higher handover failure rates. To address these challenges, the critical factor of Time to Trigger (TTT) in handover management must be accurately determined. Furthermore, the density of gNBs has a significant impact on handover performance. This study provides a comprehensive analysis of 5G handover management. Through the development and utilization of a downlink system-level simulator, the effects of various TTT values and gNB densities on 5G handover were evaluated, taking into consideration the movement of Traffic Users (TUs) with varying velocities. Simulation results showed that the handover performance can be optimized by adjusting the TTT under different gNB densities, providing valuable insights into the proper selection of TTT, UDN, and TU velocity to enhance 5G handover performance.

We first define appropriate state representation and action space, and then design an adjustment mechanism based on the actions selected by the intelligent agent. The adjustment mechanism outputs the next state and reward value of the agent. Additionally, the adjustment mechanism calculates the error between the adjusted state and the unadjusted state. Furthermore, the intelligent agent stores the acquired experience samples containing states and reward values in a buffer and replays the experiences during each iteration to learn the dynamic characteristics of the environment. We name the improved algorithm as the DQM algorithm. Experimental results demonstrate that the intelligent agent using our proposed algorithm effectively reduces the accumulated errors of inertial navigation in dynamic environments. Although our research provides a basis for achieving autonomous navigation of unmanned aerial vehicles, there is still room for significant optimization. Further research can include testing unmanned aerial vehicles in simulated environments, testing unmanned aerial vehicles in real-world environments, optimizing the design of reward functions, improving the algorithm workflow to enhance convergence speed and performance, and enhancing the algorithm's generalization ability.

To help smart wearable researchers choose the optimal ground truth methods for motion capturing (MoCap) for all types of loose garments, we present a benchmark, DrapeMoCapBench (DMCB), specifically designed to evaluate the performance of optical marker-based and marker-less MoCap. High-cost marker-based MoCap systems are well-known as precise golden standards. However, a less well-known caveat is that they require skin-tight fitting markers on bony areas to ensure the specified precision, making them questionable for loose garments. On the other hand, marker-less MoCap methods powered by computer vision models have matured over the years, which have meager costs as smartphone cameras would suffice. To this end, DMCB uses large real-world recorded MoCap datasets to perform parallel 3D physics simulations with a wide range of diversities: six levels of drape from skin-tight to extremely draped garments, three levels of motions and six body type - gender combinations to benchmark state-of-the-art optical marker-based and marker-less MoCap methods to identify the best-performing method in different scenarios. In assessing the performance of marker-based and low-cost marker-less MoCap for casual loose garments both approaches exhibit significant performance loss (>10cm), but for everyday activities involving basic and fast motions, marker-less MoCap slightly outperforms marker-based MoCap, making it a favorable and cost-effective choice for wearable studies.

北京阿比特科技有限公司