Data augmentation is a powerful technique to improve performance in applications such as image and text classification tasks. Yet, there is little rigorous understanding of why and how various augmentations work. In this work, we consider a family of linear transformations and study their effects on the ridge estimator in an over-parametrized linear regression setting. First, we show that transformations that preserve the labels of the data can improve estimation by enlarging the span of the training data. Second, we show that transformations that mix data can improve estimation by playing a regularization effect. Finally, we validate our theoretical insights on MNIST. Based on the insights, we propose an augmentation scheme that searches over the space of transformations by how uncertain the model is about the transformed data. We validate our proposed scheme on image and text datasets. For example, our method outperforms random sampling methods by 1.24% on CIFAR-100 using Wide-ResNet-28-10. Furthermore, we achieve comparable accuracy to the SoTA Adversarial AutoAugment on CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets.
Robust and efficient solvers for coupled-adjoint linear systems are crucial to successful aerostructural optimization. Monolithic and partitioned strategies can be applied. The monolithic approach is expected to offer better robustness and efficiency for strong fluid-structure interactions. However, it requires a high implementation cost and convergence may depend on appropriate scaling and initialization strategies. On the other hand, the modularity of the partitioned method enables a straightforward implementation while its convergence may require relaxation. In addition, a partitioned solver leads to a higher number of iterations to get the same level of convergence as the monolithic one. The objective of this paper is to accelerate the fluid-structure coupled-adjoint partitioned solver by considering techniques borrowed from approximate invariant subspace recycling strategies adapted to sequences of linear systems with varying right-hand sides. Indeed, in a partitioned framework, the structural source term attached to the fluid block of equations affects the right-hand side with the nice property of quickly converging to a constant value. We also consider deflation of approximate eigenvectors in conjunction with advanced inner-outer Krylov solvers for the fluid block equations. We demonstrate the benefit of these techniques by computing the coupled derivatives of an aeroelastic configuration of the ONERA-M6 fixed wing in transonic flow. For this exercise the fluid grid was coupled to a structural model specifically designed to exhibit a high flexibility. All computations are performed using RANS flow modeling and a fully linearized one-equation Spalart-Allmaras turbulence model. Numerical simulations show up to 39% reduction in matrix-vector products for GCRO-DR and up to 19% for the nested FGCRO-DR solver.
We present a simple functional programming language, called Dual PCF, that implements forward mode automatic differentiation using dual numbers in the framework of exact real number computation. The main new feature of this language is the ability to evaluate correctly up to the precision specified by the user -- in a simple and direct way -- the directional derivative of functionals as well as first order functions. In contrast to other comparable languages, Dual PCF also includes the recursive operator for defining functions and functionals. We provide a wide range of examples of Lipschitz functions and functionals that can be defined in Dual PCF. We use domain theory both to give a denotational semantics to the language and to prove the correctness of the new derivative operator using logical relations. To be able to differentiate functionals -- including on function spaces equipped with their compact-open topology that do not admit a norm -- we develop a domain-theoretic directional derivative that is Scott continuous and extends Clarke's subgradient of real-valued locally Lipschitz maps on Banach spaces to real-valued continuous maps on Hausdorff topological vector spaces. Finally, we show that we can express arbitrary computable linear functionals in Dual PCF.
The consumer drone market is rapidly expanding with new drone models featuring unique variations of hardware and software. The rapid development of drone technology and variability in drone systems can make it difficult for digital forensic investigators and tools to keep pace and effectively extract and analyse digital evidence from drones. Furthermore, the growing popularity of drones and their increased use in illegal and harmful activities, such as smuggling, espionage, and even terrorism, has led to an increase in the number of drone forensic cases for authorities to manage. To assist forensic investigators, a static digital forensic case study was conducted on two drone devices recently released by Da-Jiang Innovations (DJI): the Mini 3 Pro drone, and its remote controller, the DJI RC. The study discovered the presence of several digital artefacts on both devices, including recorded media, flight logs, and other information that could help investigators trace the drone's usage and identify its operator. Additionally, this paper explored several methods for extracting and visualising the drone's flight history, and highlights some of the potential methods used to limit, obscure, or remove key types of digital evidence.
Graphic layout generation, a growing research field, plays a significant role in user engagement and information perception. Existing methods primarily treat layout generation as a numerical optimization task, focusing on quantitative aspects while overlooking the semantic information of layout, such as the relationship between each layout element. In this paper, we propose LayoutNUWA, the first model that treats layout generation as a code generation task to enhance semantic information and harness the hidden layout expertise of large language models~(LLMs). More concretely, we develop a Code Instruct Tuning (CIT) approach comprising three interconnected modules: 1) the Code Initialization (CI) module quantifies the numerical conditions and initializes them as HTML code with strategically placed masks; 2) the Code Completion (CC) module employs the formatting knowledge of LLMs to fill in the masked portions within the HTML code; 3) the Code Rendering (CR) module transforms the completed code into the final layout output, ensuring a highly interpretable and transparent layout generation procedure that directly maps code to a visualized layout. We attain significant state-of-the-art performance (even over 50\% improvements) on multiple datasets, showcasing the strong capabilities of LayoutNUWA. Our code is available at //github.com/ProjectNUWA/LayoutNUWA.
The design of a statistical signal processing privacy problem is studied where the private data is assumed to be observable. In this work, an agent observes useful data $Y$, which is correlated with private data $X$, and wants to disclose the useful information to a user. A statistical privacy mechanism is employed to generate data $U$ based on $(X,Y)$ that maximizes the revealed information about $Y$ while satisfying a privacy criterion. To this end, we use extended versions of the Functional Representation Lemma and Strong Functional Representation Lemma and combine them with a simple observation which we call separation technique. New lower bounds on privacy-utility trade-off are derived and we show that they can improve the previous bounds. We study the obtained bounds in different scenarios and compare them with previous results.
As machine learning becomes more widely used, the need to study its implications in security and privacy becomes more urgent. Although the body of work in privacy has been steadily growing over the past few years, research on the privacy aspects of machine learning has received less focus than the security aspects. Our contribution in this research is an analysis of more than 40 papers related to privacy attacks against machine learning that have been published during the past seven years. We propose an attack taxonomy, together with a threat model that allows the categorization of different attacks based on the adversarial knowledge, and the assets under attack. An initial exploration of the causes of privacy leaks is presented, as well as a detailed analysis of the different attacks. Finally, we present an overview of the most commonly proposed defenses and a discussion of the open problems and future directions identified during our analysis.
Object detection is a crucial component of autonomous driving, and many detection applications have been developed to address this task. These applications often rely on backbone architectures, which extract representation features from inputs to perform the object detection task. The quality of the features extracted by the backbone architecture can have a significant impact on the overall detection performance. Many researchers have focused on developing new and improved backbone architectures to enhance the efficiency and accuracy of object detection applications. While these backbone architectures have shown state-of-the-art performance on generic object detection datasets like MS-COCO and PASCAL-VOC, evaluating their performance under an autonomous driving environment has not been previously explored. To address this, our study evaluates three well-known autonomous vehicle datasets, namely KITTI, NuScenes, and BDD, to compare the performance of different backbone architectures on object detection tasks.
We study the forgetting properties of the particle filter when its state - the collection of particles - is regarded as a Markov chain. Under a strong mixing assumption on the particle filter's underlying Feynman-Kac model, we find that the particle filter is exponentially mixing, and forgets its initial state in $O(\log N )$ `time', where $N$ is the number of particles and time refers to the number of particle filter algorithm steps, each comprising a selection (or resampling) and mutation (or prediction) operation. We present an example which suggests that this rate is optimal. In contrast to our result, available results to-date are extremely conservative, suggesting $O(\alpha^N)$ time steps are needed, for some $\alpha>1$, for the particle filter to forget its initialisation. We also study the conditional particle filter (CPF) and extend our forgetting result to this context. We establish a similar conclusion, namely, CPF is exponentially mixing and forgets its initial state in $O(\log N )$ time. To support this analysis, we establish new time-uniform $L^p$ error estimates for CPF, which can be of independent interest.
Software debloating techniques are applied to craft a specialized version of the program based on the user's requirements and remove irrelevant code accordingly. The debloated programs presumably maintain better performance and reduce the attack surface in contrast to the original programs. This work unleashes the effectiveness of applying software debloating techniques on the robustness of machine learning systems in the malware classification domain. We empirically study how an adversarial can leverage software debloating techniques to mislead machine learning malware classification models. We apply software debloating techniques to generate adversarial examples and demonstrate these adversarial examples can reduce the detection rate of VirusTotal. Our study opens new directions for research into adversarial machine learning not only in malware detection/classification but also in other software domains.
Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.