Objective: To develop and validate a deep learning model for the identification of out-of-body images in endoscopic videos. Background: Surgical video analysis facilitates education and research. However, video recordings of endoscopic surgeries can contain privacy-sensitive information, especially if out-of-body scenes are recorded. Therefore, identification of out-of-body scenes in endoscopic videos is of major importance to preserve the privacy of patients and operating room staff. Methods: A deep learning model was trained and evaluated on an internal dataset of 12 different types of laparoscopic and robotic surgeries. External validation was performed on two independent multicentric test datasets of laparoscopic gastric bypass and cholecystectomy surgeries. All images extracted from the video datasets were annotated as inside or out-of-body. Model performance was evaluated compared to human ground truth annotations measuring the receiver operating characteristic area under the curve (ROC AUC). Results: The internal dataset consisting of 356,267 images from 48 videos and the two multicentric test datasets consisting of 54,385 and 58,349 images from 10 and 20 videos, respectively, were annotated. Compared to ground truth annotations, the model identified out-of-body images with 99.97% ROC AUC on the internal test dataset. Mean $\pm$ standard deviation ROC AUC on the multicentric gastric bypass dataset was 99.94$\pm$0.07% and 99.71$\pm$0.40% on the multicentric cholecystectomy dataset, respectively. Conclusion: The proposed deep learning model can reliably identify out-of-body images in endoscopic videos. The trained model is publicly shared. This facilitates privacy preservation in surgical video analysis.
The past few years have witnessed the great success and prevalence of self-supervised representation learning within the language and 2D vision communities. However, such advancements have not been fully migrated to the field of 3D point cloud learning. Different from existing pre-training paradigms designed for deep point cloud feature extractors that fall into the scope of generative modeling or contrastive learning, this paper proposes a translative pre-training framework, namely PointVST, driven by a novel self-supervised pretext task of cross-modal translation from 3D point clouds to their corresponding diverse forms of 2D rendered images. More specifically, we begin with deducing view-conditioned point-wise embeddings through the insertion of the viewpoint indicator, and then adaptively aggregate a view-specific global codeword, which can be further fed into subsequent 2D convolutional translation heads for image generation. Extensive experimental evaluations on various downstream task scenarios demonstrate that our PointVST shows consistent and prominent performance superiority over current state-of-the-art approaches as well as satisfactory domain transfer capability. Our code will be publicly available at //github.com/keeganhk/PointVST.
Recent advancements in surgical computer vision applications have been driven by fully-supervised methods, primarily using only visual data. These methods rely on manually annotated surgical videos to predict a fixed set of object categories, limiting their generalizability to unseen surgical procedures and downstream tasks. In this work, we put forward the idea that the surgical video lectures available through open surgical e-learning platforms can provide effective supervisory signals for multi-modal representation learning without relying on manual annotations. We address the surgery-specific linguistic challenges present in surgical video lectures by employing multiple complementary automatic speech recognition systems to generate text transcriptions. We then present a novel method, SurgVLP - Surgical Vision Language Pre-training, for multi-modal representation learning. SurgVLP constructs a new contrastive learning objective to align video clip embeddings with the corresponding multiple text embeddings by bringing them together within a joint latent space. To effectively show the representation capability of the learned joint latent space, we introduce several vision-and-language tasks for surgery, such as text-based video retrieval, temporal activity grounding, and video captioning, as benchmarks for evaluation. We further demonstrate that without using any labeled ground truth, our approach can be employed for traditional vision-only surgical downstream tasks, such as surgical tool, phase, and triplet recognition. The code will be made available at //github.com/CAMMA-public/SurgVLP
Operating system kernels employ virtual memory management (VMM) subsystems to virtualize the addresses of memory regions in order to to isolate untrusted processes, ensure process isolation and implement demand-paging and copy-on-write behaviors for performance and resource controls. Bugs in these systems can lead to kernel crashes. VMM code is a critical piece of general-purpose OS kernels, but their verification is challenging due to the hardware interface (mappings are updated via writes to memory locations, using addresses which are themselves virtualized). Prior work on VMM verification has either only handled a single address space, trusted significant pieces of assembly code, or resorted to direct reasoning over machine semantics rather than exposing a clean logical interface. In this paper, we introduce a modal abstraction to describe the truth of assertions relative to a specific virtual address space, allowing different address spaces to refer to each other, and enabling verification of instruction sequences manipulating multiple address spaces. Using them effectively requires working with other assertions, such as points-to assertions in our separation logic, as relative to a given address space. We therefore define virtual points-to assertions, which mimic hardware address translation, relative to a page table root. We demonstrate our approach with challenging fragments of VMM code showing that our approach handles examples beyond what prior work can address, including reasoning about a sequence of instructions as it changes address spaces. All definitions and theorems mentioned in this paper including the operational model of a RISC-like fragment of supervisor-mode x86-64, and a logic as an instantiation of the Iris framework, are mechanized inside Coq.
Purpose: Recent advances in Surgical Data Science (SDS) have contributed to an increase in video recordings from hospital environments. While methods such as surgical workflow recognition show potential in increasing the quality of patient care, the quantity of video data has surpassed the scale at which images can be manually anonymized. Existing automated 2D anonymization methods under-perform in Operating Rooms (OR), due to occlusions and obstructions. We propose to anonymize multi-view OR recordings using 3D data from multiple camera streams. Methods: RGB and depth images from multiple cameras are fused into a 3D point cloud representation of the scene. We then detect each individual's face in 3D by regressing a parametric human mesh model onto detected 3D human keypoints and aligning the face mesh with the fused 3D point cloud. The mesh model is rendered into every acquired camera view, replacing each individual's face. Results: Our method shows promise in locating faces at a higher rate than existing approaches. DisguisOR produces geometrically consistent anonymizations for each camera view, enabling more realistic anonymization that is less detrimental to downstream tasks. Conclusion: Frequent obstructions and crowding in operating rooms leaves significant room for improvement for off-the-shelf anonymization methods. DisguisOR addresses privacy on a scene level and has the potential to facilitate further research in SDS.
This paper presents a novel approach for generating 3D talking heads from raw audio inputs. Our method grounds on the idea that speech related movements can be comprehensively and efficiently described by the motion of a few control points located on the movable parts of the face, i.e., landmarks. The underlying musculoskeletal structure then allows us to learn how their motion influences the geometrical deformations of the whole face. The proposed method employs two distinct models to this aim: the first one learns to generate the motion of a sparse set of landmarks from the given audio. The second model expands such landmarks motion to a dense motion field, which is utilized to animate a given 3D mesh in neutral state. Additionally, we introduce a novel loss function, named Cosine Loss, which minimizes the angle between the generated motion vectors and the ground truth ones. Using landmarks in 3D talking head generation offers various advantages such as consistency, reliability, and obviating the need for manual-annotation. Our approach is designed to be identity-agnostic, enabling high-quality facial animations for any users without additional data or training.
The success of re-localisation has crucial implications for the practical deployment of robots operating within a prior map or relative to one another in real-world scenarios. Using single-modality, place recognition and localisation can be compromised in challenging environments such as forests. To address this, we propose a strategy to prevent lidar-based re-localisation failure using lidar-image cross-modality. Our solution relies on self-supervised 2D-3D feature matching to predict alignment and misalignment. Leveraging a deep network for lidar feature extraction and relative pose estimation between point clouds, we train a model to evaluate the estimated transformation. A model predicting the presence of misalignment is learned by analysing image-lidar similarity in the embedding space and the geometric constraints available within the region seen in both modalities in Euclidean space. Experimental results using real datasets (offline and online modes) demonstrate the effectiveness of the proposed pipeline for robust re-localisation in unstructured, natural environments.
Video analytics are often performed as cloud services in edge settings, mainly to offload computation, and also in situations where the results are not directly consumed at the video sensors. Sending high-quality video data from the edge devices can be expensive both in terms of bandwidth and power use. In order to build a streaming video analytics pipeline that makes efficient use of these resources, it is therefore imperative to reduce the size of the video stream. Traditional video compression algorithms are unaware of the semantics of the video, and can be both inefficient and harmful for the analytics performance. In this paper, we introduce LtC, a collaborative framework between the video source and the analytics server, that efficiently learns to reduce the video streams within an analytics pipeline. Specifically, LtC uses the full-fledged analytics algorithm at the server as a teacher to train a lightweight student neural network, which is then deployed at the video source. The student network is trained to comprehend the semantic significance of various regions within the videos, which is used to differentially preserve the crucial regions in high quality while the remaining regions undergo aggressive compression. Furthermore, LtC also incorporates a novel temporal filtering algorithm based on feature-differencing to omit transmitting frames that do not contribute new information. Overall, LtC is able to use 28-35% less bandwidth and has up to 45% shorter response delay compared to recently published state of the art streaming frameworks while achieving similar analytics performance.
Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey to focus on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area. A regularly updated project page can be found at //github.com/tinatiansjz/hmr-survey.
Deep learning applies multiple processing layers to learn representations of data with multiple levels of feature extraction. This emerging technique has reshaped the research landscape of face recognition since 2014, launched by the breakthroughs of Deepface and DeepID methods. Since then, deep face recognition (FR) technique, which leverages the hierarchical architecture to learn discriminative face representation, has dramatically improved the state-of-the-art performance and fostered numerous successful real-world applications. In this paper, we provide a comprehensive survey of the recent developments on deep FR, covering the broad topics on algorithms, data, and scenes. First, we summarize different network architectures and loss functions proposed in the rapid evolution of the deep FR methods. Second, the related face processing methods are categorized into two classes: `one-to-many augmentation' and `many-to-one normalization'. Then, we summarize and compare the commonly used databases for both model training and evaluation. Third, we review miscellaneous scenes in deep FR, such as cross-factor, heterogenous, multiple-media and industry scenes. Finally, potential deficiencies of the current methods and several future directions are highlighted.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.