亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The ability to autonomously navigate in unknown environments is important for mobile robots. The map is the core component to achieve this. Most map representations rely on drift-free state estimation and provide a global metric map to navigate. However, in large-scale real-world applications, it's hard to prohibit drifts and compose a globally consistent map quickly. In this paper, a novel representation named, HiTMap, is proposed to enhance the existing map representations. The central idea is to adopt a submap-based hierarchical topology rather than a global metric map so that only a local metric map is maintained for obstacle avoidance which ensures the lightweight of the representation. To guide the robots navigate into unknown spaces, frontiers are detected and attached to the map as an attribute. We also develop a path planning module to evaluate the feasibility and efficiency of our map representation. The system is validated in a simulation environment and a demonstration in the real world is conducted. In addition, the HiTMap is made available open-source.

相關內容

In this work we apply deep reinforcement learning to the problems of navigating a three-dimensional environment and inferring the locations of human speaker audio sources within, in the case where the only available information is the raw sound from the environment, as a simulated human listener placed in the environment would hear it. For this purpose we create two virtual environments using the Unity game engine, one presenting an audio-based navigation problem and one presenting an audio source localization problem. We also create an autonomous agent based on PPO online reinforcement learning algorithm and attempt to train it to solve these environments. Our experiments show that our agent achieves adequate performance and generalization ability in both environments, measured by quantitative metrics, even when a limited amount of training data are available or the environment parameters shift in ways not encountered during training. We also show that a degree of agent knowledge transfer is possible between the environments.

We propose TrendSegment, a methodology for detecting multiple change-points corre- sponding to linear trend changes in one dimensional data. A core ingredient of TrendSegment is a new Tail-Greedy Unbalanced Wavelet transform: a conditionally orthonormal, bottom- up transformation of the data through an adaptively constructed unbalanced wavelet basis, which results in a sparse representation of the data. Due to its bottom-up nature, this multi- scale decomposition focuses on local features in its early stages and on global features next which enables the detection of both long and short linear trend segments at once. To reduce the computational complexity, the proposed method merges multiple regions in a single pass over the data. We show the consistency of the estimated number and locations of change- points. The practicality of our approach is demonstrated through simulations and two real data examples, involving Iceland temperature data and sea ice extent of the Arctic and the Antarctic. Our methodology is implemented in the R package trendsegmentR, available from CRAN.

This paper is an initial endeavor to bridge the gap between powerful Deep Reinforcement Learning methodologies and the problem of exploration/coverage of unknown terrains. Within this scope, MarsExplorer, an openai-gym compatible environment tailored to exploration/coverage of unknown areas, is presented. MarsExplorer translates the original robotics problem into a Reinforcement Learning setup that various off-the-shelf algorithms can tackle. Any learned policy can be straightforwardly applied to a robotic platform without an elaborate simulation model of the robot's dynamics to apply a different learning/adaptation phase. One of its core features is the controllable multi-dimensional procedural generation of terrains, which is the key for producing policies with strong generalization capabilities. Four different state-of-the-art RL algorithms (A3C, PPO, Rainbow, and SAC) are trained on the MarsExplorer environment, and a proper evaluation of their results compared to the average human-level performance is reported. In the follow-up experimental analysis, the effect of the multi-dimensional difficulty setting on the learning capabilities of the best-performing algorithm (PPO) is analyzed. A milestone result is the generation of an exploration policy that follows the Hilbert curve without providing this information to the environment or rewarding directly or indirectly Hilbert-curve-like trajectories. The experimental analysis is concluded by evaluating PPO learned policy algorithm side-by-side with frontier-based exploration strategies. A study on the performance curves revealed that PPO-based policy was capable of performing adaptive-to-the-unknown-terrain sweeping without leaving expensive-to-revisit areas uncovered, underlying the capability of RL-based methodologies to tackle exploration tasks efficiently. The source code can be found at: //github.com/dimikout3/MarsExplorer.

Solving robotic navigation tasks via reinforcement learning (RL) is challenging due to their sparse reward and long decision horizon nature. However, in many navigation tasks, high-level (HL) task representations, like a rough floor plan, are available. Previous work has demonstrated efficient learning by hierarchal approaches consisting of path planning in the HL representation and using sub-goals derived from the plan to guide the RL policy in the source task. However, these approaches usually neglect the complex dynamics and sub-optimal sub-goal-reaching capabilities of the robot during planning. This work overcomes these limitations by proposing a novel hierarchical framework that utilizes a trainable planning policy for the HL representation. Thereby robot capabilities and environment conditions can be learned utilizing collected rollout data. We specifically introduce a planning policy based on value iteration with a learned transition model (VI-RL). In simulated robotic navigation tasks, VI-RL results in consistent strong improvement over vanilla RL, is on par with vanilla hierarchal RL on single layouts but more broadly applicable to multiple layouts, and is on par with trainable HL path planning baselines except for a parking task with difficult non-holonomic dynamics where it shows marked improvements.

Radio Environmental Maps (REMs) are a powerful tool for enhancing the performance of various communication and networked agents. However, generating REMs is a laborious undertaking, especially in complex 3-Dimensional (3D) environments, such as indoors. To address this issue, we propose a system for autonomous generation of fine-grained REMs of indoor 3D spaces. In the system, multiple small indoor Unmanned Aerial Vehicles (UAVs) are sequentially used for 3D sampling of signal quality indicators. The collected readings are streamlined to a Machine Learning (ML) system for its training and, once trained, the system is able to predict the signal quality at unknown 3D locations. The system enables automated and autonomous REM generation, and can be straightforwardly deployed in new environments. In addition, the system supports REM sampling without self-interference and is technology-agnostic, as long as the REM-sampling receivers features suitable sizes and weights to be carried by the UAVs. In the demonstration, we instantiate the system design using two UAVs and show its capability of visiting 72 waypoints and gathering thousands of Wi-Fi data samples. Our results also include an instantiation of the ML system for predicting the Received Signal Strength (RSS) of known Wi-Fi Access Points (APs) at locations not visited by the UAVs.

Unsupervised (or self-supervised) graph representation learning is essential to facilitate various graph data mining tasks when external supervision is unavailable. The challenge is to encode the information about the graph structure and the attributes associated with the nodes and edges into a low dimensional space. Most existing unsupervised methods promote similar representations across nodes that are topologically close. Recently, it was shown that leveraging additional graph-level information, e.g., information that is shared among all nodes, encourages the representations to be mindful of the global properties of the graph, which greatly improves their quality. However, in most graphs, there is significantly more structure that can be captured, e.g., nodes tend to belong to (multiple) clusters that represent structurally similar nodes. Motivated by this observation, we propose a graph representation learning method called Graph InfoClust (GIC), that seeks to additionally capture cluster-level information content. These clusters are computed by a differentiable K-means method and are jointly optimized by maximizing the mutual information between nodes of the same clusters. This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality. Experiments show that GIC outperforms state-of-art methods in various downstream tasks (node classification, link prediction, and node clustering) with a 0.9% to 6.1% gain over the best competing approach, on average.

Fashion is a complex social phenomenon. People follow fashion styles from demonstrations by experts or fashion icons. However, for machine agent, learning to imitate fashion experts from demonstrations can be challenging, especially for complex styles in environments with high-dimensional, multimodal observations. Most existing research regarding fashion outfit composition utilizes supervised learning methods to mimic the behaviors of style icons. These methods suffer from distribution shift: because the agent greedily imitates some given outfit demonstrations, it can drift away from one style to another styles given subtle differences. In this work, we propose an adversarial inverse reinforcement learning formulation to recover reward functions based on hierarchical multimodal representation (HM-AIRL) during the imitation process. The hierarchical joint representation can more comprehensively model the expert composited outfit demonstrations to recover the reward function. We demonstrate that the proposed HM-AIRL model is able to recover reward functions that are robust to changes in multimodal observations, enabling us to learn policies under significant variation between different styles.

Hierarchical text classification, which aims to classify text documents into a given hierarchy, is an important task in many real-world applications. Recently, deep neural models are gaining increasing popularity for text classification due to their expressive power and minimum requirement for feature engineering. However, applying deep neural networks for hierarchical text classification remains challenging, because they heavily rely on a large amount of training data and meanwhile cannot easily determine appropriate levels of documents in the hierarchical setting. In this paper, we propose a weakly-supervised neural method for hierarchical text classification. Our method does not require a large amount of training data but requires only easy-to-provide weak supervision signals such as a few class-related documents or keywords. Our method effectively leverages such weak supervision signals to generate pseudo documents for model pre-training, and then performs self-training on real unlabeled data to iteratively refine the model. During the training process, our model features a hierarchical neural structure, which mimics the given hierarchy and is capable of determining the proper levels for documents with a blocking mechanism. Experiments on three datasets from different domains demonstrate the efficacy of our method compared with a comprehensive set of baselines.

Higher level functionality in autonomous driving depends strongly on a precise motion estimate of the vehicle. Powerful algorithms have been developed. However, their great majority focuses on either binocular imagery or pure LIDAR measurements. The promising combination of camera and LIDAR for visual localization has mostly been unattended. In this work we fill this gap, by proposing a depth extraction algorithm from LIDAR measurements for camera feature tracks and estimating motion by robustified keyframe based Bundle Adjustment. Semantic labeling is used for outlier rejection and weighting of vegetation landmarks. The capability of this sensor combination is demonstrated on the competitive KITTI dataset, achieving a placement among the top 15. The code is released to the community.

Image foreground extraction is a classical problem in image processing and vision, with a large range of applications. In this dissertation, we focus on the extraction of text and graphics in mixed-content images, and design novel approaches for various aspects of this problem. We first propose a sparse decomposition framework, which models the background by a subspace containing smooth basis vectors, and foreground as a sparse and connected component. We then formulate an optimization framework to solve this problem, by adding suitable regularizations to the cost function to promote the desired characteristics of each component. We present two techniques to solve the proposed optimization problem, one based on alternating direction method of multipliers (ADMM), and the other one based on robust regression. Promising results are obtained for screen content image segmentation using the proposed algorithm. We then propose a robust subspace learning algorithm for the representation of the background component using training images that could contain both background and foreground components, as well as noise. With the learnt subspace for the background, we can further improve the segmentation results, compared to using a fixed subspace. Lastly, we investigate a different class of signal/image decomposition problem, where only one signal component is active at each signal element. In this case, besides estimating each component, we need to find their supports, which can be specified by a binary mask. We propose a mixed-integer programming problem, that jointly estimates the two components and their supports through an alternating optimization scheme. We show the application of this algorithm on various problems, including image segmentation, video motion segmentation, and also separation of text from textured images.

北京阿比特科技有限公司