亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel approach to numerically approximate McKean-Vlasov stochastic differential equations (MV-SDE) using stochastic gradient descent (SGD) while avoiding the use of interacting particle systems. The technique of SGD is deployed to solve a Euclidean minimization problem, which is obtained by first representing the MV-SDE as a minimization problem over the set of continuous functions of time, and then by approximating the domain with a finite-dimensional subspace. Convergence is established by proving certain intermediate stability and moment estimates of the relevant stochastic processes (including the tangent ones). Numerical experiments illustrate the competitive performance of our SGD based method compared to the IPS benchmarks. This work offers a theoretical foundation for using the SGD method in the context of numerical approximation of MV-SDEs, and provides analytical tools to study its stability and convergence.

相關內容

Steepest descent methods combining complex contour deformation with numerical quadrature provide an efficient and accurate approach for the evaluation of highly oscillatory integrals. However, unless the phase function governing the oscillation is particularly simple, their application requires a significant amount of a priori analysis and expert user input, to determine the appropriate contour deformation, and to deal with the non-uniformity in the accuracy of standard quadrature techniques associated with the coalescence of stationary points (saddle points) with each other, or with the endpoints of the original integration contour. In this paper we present a novel algorithm for the numerical evaluation of oscillatory integrals with general polynomial phase functions, which automates the contour deformation process and avoids the difficulties typically encountered with coalescing stationary points and endpoints. The inputs to the algorithm are simply the phase and amplitude functions, the endpoints and orientation of the original integration contour, and a small number of numerical parameters. By a series of numerical experiments we demonstrate that the algorithm is accurate and efficient over a large range of frequencies, even for examples with a large number of coalescing stationary points and with endpoints at infinity. As a particular application, we use our algorithm to evaluate cuspoid canonical integrals from scattering theory. A Matlab implementation of the algorithm is made available and is called PathFinder.

We provide numerical bounds on the Crouzeix ratiofor KLS matrices $A$ which have a line segment on the boundary of the numerical range. The Crouzeix ratio is the supremum over all polynomials $p$ of the spectral norm of $p(A)$ dividedby the maximum absolute value of $p$ on the numerical range of $A$.Our bounds confirm the conjecture that this ratiois less than or equal to $2$. We also give a precise description of these numerical ranges.

We prove asymptotic results for a modification of the cross-entropy estimator originally introduced by Ziv and Merhav in the Markovian setting in 1993. Our results concern a more general class of decoupled measures. In particular, our results imply strong asymptotic consistency of the modified estimator for all pairs of functions of stationary, irreducible, finite-state Markov chains satisfying a mild decay condition. {Our approach is based on the study of a rescaled cumulant-generating function called the cross-entropic pressure, importing to information theory some techniques from the study of large deviations within the thermodynamic formalism.

We characterize the strength, in terms of Weihrauch degrees, of certain problems related to Ramsey-like theorems concerning colourings of the rationals and of the natural numbers. The theorems we are chiefly interested in assert the existence of almost-homogeneous sets for colourings of pairs of rationals respectively natural numbers satisfying properties determined by some additional algebraic structure on the set of colours. In the context of reverse mathematics, most of the principles we study are equivalent to $\Sigma^0_2$-induction over $\mathrm{RCA}_0$. The associated problems in the Weihrauch lattice are related to $\mathrm{TC}_\mathbb{N}^*$, $(\mathrm{LPO}')^*$ or their product, depending on their precise formalizations.

Neural-ODE parameterize a differential equation using continuous depth neural network and solve it using numerical ODE-integrator. These models offer a constant memory cost compared to models with discrete sequence of hidden layers in which memory cost increases linearly with the number of layers. In addition to memory efficiency, other benefits of neural-ode include adaptability of evaluation approach to input, and flexibility to choose numerical precision or fast training. However, despite having all these benefits, it still has some limitations. We identify the ODE-integrator (also called ODE-solver) as the weakest link in the chain as it may have stability, consistency and convergence (CCS) issues and may suffer from slower convergence or may not converge at all. We propose a first-order Nesterov's accelerated gradient (NAG) based ODE-solver which is proven to be tuned vis-a-vis CCS conditions. We empirically demonstrate the efficacy of our approach by training faster, while achieving better or comparable performance against neural-ode employing other fixed-step explicit ODE-solvers as well discrete depth models such as ResNet in three different tasks including supervised classification, density estimation, and time-series modelling.

Many asymptotically minimax procedures for function estimation often rely on somewhat arbitrary and restrictive assumptions such as isotropy or spatial homogeneity. This work enhances the theoretical understanding of Bayesian additive regression trees under substantially relaxed smoothness assumptions. We provide a comprehensive study of asymptotic optimality and posterior contraction of Bayesian forests when the regression function has anisotropic smoothness that possibly varies over the function domain. The regression function can also be possibly discontinuous. We introduce a new class of sparse {\em piecewise heterogeneous anisotropic} H\"{o}lder functions and derive their minimax lower bound of estimation in high-dimensional scenarios under the $L_2$-loss. We then find that the Bayesian tree priors, coupled with a Dirichlet subset selection prior for sparse estimation in high-dimensional scenarios, adapt to unknown heterogeneous smoothness, discontinuity, and sparsity. These results show that Bayesian forests are uniquely suited for more general estimation problems that would render other default machine learning tools, such as Gaussian processes, suboptimal. Our numerical study shows that Bayesian forests often outperform other competitors such as random forests and deep neural networks, which are believed to work well for discontinuous or complicated smooth functions. Beyond nonparametric regression, we also examined posterior contraction of Bayesian forests for density estimation and binary classification using the technique developed in this study.

We consider the application of the generalized Convolution Quadrature (gCQ) to approximate the solution of an important class of sectorial problems. The gCQ is a generalization of Lubich's Convolution Quadrature (CQ) that allows for variable steps. The available stability and convergence theory for the gCQ requires non realistic regularity assumptions on the data, which do not hold in many applications of interest, such as the approximation of subdiffusion equations. It is well known that for non smooth enough data the original CQ, with uniform steps, presents an order reduction close to the singularity. We generalize the analysis of the gCQ to data satisfying realistic regularity assumptions and provide sufficient conditions for stability and convergence on arbitrary sequences of time points. We consider the particular case of graded meshes and show how to choose them optimally, according to the behaviour of the data. An important advantage of the gCQ method is that it allows for a fast and memory reduced implementation. We describe how the fast and oblivious gCQ can be implemented and illustrate our theoretical results with several numerical experiments.

We introduce the new setting of open-vocabulary object 6D pose estimation, in which a textual prompt is used to specify the object of interest. In contrast to existing approaches, in our setting (i) the object of interest is specified solely through the textual prompt, (ii) no object model (e.g. CAD or video sequence) is required at inference, (iii) the object is imaged from two different viewpoints of two different scenes, and (iv) the object was not observed during the training phase. To operate in this setting, we introduce a novel approach that leverages a Vision-Language Model to segment the object of interest from two distinct scenes and to estimate its relative 6D pose. The key of our approach is a carefully devised strategy to fuse object-level information provided by the prompt with local image features, resulting in a feature space that can generalize to novel concepts. We validate our approach on a new benchmark based on two popular datasets, REAL275 and Toyota-Light, which collectively encompass 39 object instances appearing in four thousand image pairs. The results demonstrate that our approach outperforms both a well-established hand-crafted method and a recent deep learning-based baseline in estimating the relative 6D pose of objects in different scenes. Project website: //jcorsetti.github.io/oryon-website/.

We propose an innovative and generic methodology to analyse individual and collective behaviour through individual trajectory data. The work is motivated by the analysis of GPS trajectories of fishing vessels collected from regulatory tracking data in the context of marine biodiversity conservation and ecosystem-based fisheries management. We build a low-dimensional latent representation of trajectories using convolutional neural networks as non-linear mapping. This is done by training a conditional variational auto-encoder taking into account covariates. The posterior distributions of the latent representations can be linked to the characteristics of the actual trajectories. The latent distributions of the trajectories are compared with the Bhattacharyya coefficient, which is well-suited for comparing distributions. Using this coefficient, we analyse the variation of the individual behaviour of each vessel during time. For collective behaviour analysis, we build proximity graphs and use an extension of the stochastic block model for multiple networks. This model results in a clustering of the individuals based on their set of trajectories. The application to French fishing vessels enables us to obtain groups of vessels whose individual and collective behaviours exhibit spatio-temporal patterns over the period 2014-2018.

We present ParrotTTS, a modularized text-to-speech synthesis model leveraging disentangled self-supervised speech representations. It can train a multi-speaker variant effectively using transcripts from a single speaker. ParrotTTS adapts to a new language in low resource setup and generalizes to languages not seen while training the self-supervised backbone. Moreover, without training on bilingual or parallel examples, ParrotTTS can transfer voices across languages while preserving the speaker specific characteristics, e.g., synthesizing fluent Hindi speech using a French speaker's voice and accent. We present extensive results in monolingual and multi-lingual scenarios. ParrotTTS outperforms state-of-the-art multi-lingual TTS models using only a fraction of paired data as latter.

北京阿比特科技有限公司