亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Physical interaction with textiles, such as assistive dressing, relies on advanced dextreous capabilities. The underlying complexity in textile behavior when being pulled and stretched, is due to both the yarn material properties and the textile construction technique. Today, there are no commonly adopted and annotated datasets on which the various interaction or property identification methods are assessed. One important property that affects the interaction is material elasticity that results from both the yarn material and construction technique: these two are intertwined and, if not known a-priori, almost impossible to identify through sensing commonly available on robotic platforms. We introduce Elastic Context (EC), a concept that integrates various properties that affect elastic behavior, to enable a more effective physical interaction with textiles. The definition of EC relies on stress/strain curves commonly used in textile engineering, which we reformulated for robotic applications. We employ EC using Graph Neural Network (GNN) to learn generalized elastic behaviors of textiles. Furthermore, we explore the effect the dimension of the EC has on accurate force modeling of non-linear real-world elastic behaviors, highlighting the challenges of current robotic setups to sense textile properties.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 可理解性 · MoDELS · Integration · AI ·
2022 年 10 月 27 日

We survey a current, heated debate in the AI research community on whether large pre-trained language models can be said to "understand" language -- and the physical and social situations language encodes -- in any important sense. We describe arguments that have been made for and against such understanding, and key questions for the broader sciences of intelligence that have arisen in light of these arguments. We contend that a new science of intelligence can be developed that will provide insight into distinct modes of understanding, their strengths and limitations, and the challenge of integrating diverse forms of cognition.

Numerous network models have been investigated to gain insights into the origins of fractality. In this work, we introduce two novel network models, to better understand the growing mechanism and structural characteristics of fractal networks. The Repulsion Based Fractal Model (RBFM) is built on the well-known Song-Havlin-Makse (SHM) model, but in RBFM repulsion is always present among a specific group of nodes. The model resolves the contradiction between the SHM model and the Hub Attraction Dynamical Growth model, by showing that repulsion is the characteristic that induces fractality. The Lattice Small-world Transition Model (LSwTM) was motivated by the fact that repulsion directly influences the node distances. Through LSwTM we study the fractal-small-world transition. The model illustrates the transition on a fixed number of nodes and edges using a preferential-attachment-based edge rewiring process. It shows that a small average distance works against fractal scaling, and also demonstrates that fractality is not a dichotomous property, continuous transition can be observed between the pure fractal and non-fractal characteristics.

This paper contributes with a pragmatic evaluation framework for explainable Machine Learning (ML) models for clinical decision support. The study revealed a more nuanced role for ML explanation models, when these are pragmatically embedded in the clinical context. Despite the general positive attitude of healthcare professionals (HCPs) towards explanations as a safety and trust mechanism, for a significant set of participants there were negative effects associated with confirmation bias, accentuating model over-reliance and increased effort to interact with the model. Also, contradicting one of its main intended functions, standard explanatory models showed limited ability to support a critical understanding of the limitations of the model. However, we found new significant positive effects which repositions the role of explanations within a clinical context: these include reduction of automation bias, addressing ambiguous clinical cases (cases where HCPs were not certain about their decision) and support of less experienced HCPs in the acquisition of new domain knowledge.

Uncertainty quantification is crucial for assessing the predictive ability of AI algorithms. A large body of work (including normalizing flows and Bayesian neural networks) has been devoted to describing the entire predictive distribution (PD) of a target variable Y given input features $\mathbf{X}$. However, off-the-shelf PDs are usually far from being conditionally calibrated; i.e., the probability of occurrence of an event given input $\mathbf{X}$ can be significantly different from the predicted probability. Most current research on predictive inference (such as conformal prediction) concerns constructing calibrated prediction sets only. It is often believed that the problem of obtaining and assessing entire conditionally calibrated PDs is too challenging. In this work, we show that recalibration, as well as diagnostics of entire PDs, are indeed attainable goals in practice. Our proposed method relies on the idea of regressing probability integral transform (PIT) scores against $\mathbf{X}$. This regression gives full diagnostics of conditional coverage across the entire feature space and can be used to recalibrate misspecified PDs. We benchmark our corrected prediction bands against oracle bands and state-of-the-art predictive inference algorithms for synthetic data, including settings with a distributional shift. Finally, we produce calibrated PDs for two applications: (i) probabilistic nowcasting based on sequences of satellite images, and (ii) estimation of galaxy distances based on imaging data (photometric redshifts).

Text data can pose a risk of harm. However, the risks are not fully understood, and how to handle, present, and discuss harmful text in a safe way remains an unresolved issue in the NLP community. We provide an analytical framework categorising harms on three axes: (1) the harm type (e.g., misinformation, hate speech or racial stereotypes); (2) whether a harm is \textit{sought} as a feature of the research design if explicitly studying harmful content (e.g., training a hate speech classifier), versus \textit{unsought} if harmful content is encountered when working on unrelated problems (e.g., language generation or part-of-speech tagging); and (3) who it affects, from people (mis)represented in the data to those handling the data and those publishing on the data. We provide advice for practitioners, with concrete steps for mitigating harm in research and in publication. To assist implementation we introduce \textsc{HarmCheck} -- a documentation standard for handling and presenting harmful text in research.

Bayesian nonparametric mixture models are common for modeling complex data. While these models are well-suited for density estimation, their application for clustering has some limitations. Miller and Harrison (2014) proved posterior inconsistency in the number of clusters when the true number of clusters is finite for Dirichlet process and Pitman--Yor process mixture models. In this work, we extend this result to additional Bayesian nonparametric priors such as Gibbs-type processes and finite-dimensional representations of them. The latter include the Dirichlet multinomial process and the recently proposed Pitman--Yor and normalized generalized gamma multinomial processes. We show that mixture models based on these processes are also inconsistent in the number of clusters and discuss possible solutions. Notably, we show that a post-processing algorithm introduced by Guha et al. (2021) for the Dirichlet process extends to more general models and provides a consistent method to estimate the number of components.

"What-if" questions are intuitively generated and commonly asked during the design process. Engineers and architects need to inherently conduct design decisions, progressing from one phase to another. They either use empirical domain experience, simulations, or data-driven methods to acquire consequential feedback. We take an example from an interdisciplinary domain of energy-efficient building design to argue that the current methods for decision support have limitations or deficiencies in four aspects: parametric independency identification, gaps in integrating knowledge-based and data-driven approaches, less explicit model interpretation, and ambiguous decision support boundaries. In this study, we first clarify the nature of dynamic experience in individuals and constant principal knowledge in design. Subsequently, we introduce causal inference into the domain. A four-step process is proposed to discover and analyze parametric dependencies in a mathematically rigorous and computationally efficient manner by identifying the causal diagram with interventions. The causal diagram provides a nexus for integrating domain knowledge with data-driven methods, providing interpretability and testability against the domain experience within the design space. Extracting causal structures from the data is close to the nature design reasoning process. As an illustration, we applied the properties of the proposed estimators through simulations. The paper concludes with a feasibility study demonstrating the proposed framework's realization.

High model performance, on average, can hide that models may systematically underperform on subgroups of the data. We consider the tabular setting, which surfaces the unique issue of outcome heterogeneity - this is prevalent in areas such as healthcare, where patients with similar features can have different outcomes, thus making reliable predictions challenging. To tackle this, we propose Data-IQ, a framework to systematically stratify examples into subgroups with respect to their outcomes. We do this by analyzing the behavior of individual examples during training, based on their predictive confidence and, importantly, the aleatoric (data) uncertainty. Capturing the aleatoric uncertainty permits a principled characterization and then subsequent stratification of data examples into three distinct subgroups (Easy, Ambiguous, Hard). We experimentally demonstrate the benefits of Data-IQ on four real-world medical datasets. We show that Data-IQ's characterization of examples is most robust to variation across similarly performant (yet different) models, compared to baselines. Since Data-IQ can be used with any ML model (including neural networks, gradient boosting etc.), this property ensures consistency of data characterization, while allowing flexible model selection. Taking this a step further, we demonstrate that the subgroups enable us to construct new approaches to both feature acquisition and dataset selection. Furthermore, we highlight how the subgroups can inform reliable model usage, noting the significant impact of the Ambiguous subgroup on model generalization.

The acoustic inverse obstacle scattering problem consists of determining the shape of a domain from measurements of the scattered far field due to some set of incident fields (probes). For a penetrable object with known sound speed, this can be accomplished by treating the boundary alone as an unknown curve. Alternatively, one can treat the entire object as unknown and use a more general volumetric representation, without making use of the known sound speed. Both lead to strongly nonlinear and nonconvex optimization problems for which recursive linearization provides a useful framework for numerical analysis. After extending our shape optimization approach developed earlier for impenetrable bodies, we carry out a systematic study of both methods and compare their performance on a variety of examples. Our findings indicate that the volumetric approach is more robust, even though the number of degrees of freedom is significantly larger. We conclude with a discussion of this phenomenon and potential directions for further research.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

北京阿比特科技有限公司