亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High dimensional categorical data are routinely collected in biomedical and social sciences. It is of great importance to build interpretable parsimonious models that perform dimension reduction and uncover meaningful latent structures from such discrete data. Identifiability is a fundamental requirement for valid modeling and inference in such scenarios, yet is challenging to address when there are complex latent structures. In this article, we propose a class of identifiable multilayer (potentially deep) discrete latent structure models for discrete data, termed Bayesian pyramids. We establish the identifiability of Bayesian pyramids by developing novel transparent conditions on the pyramid-shaped deep latent directed graph. The proposed identifiability conditions can ensure Bayesian posterior consistency under suitable priors. As an illustration, we consider the two-latent-layer model and propose a Bayesian shrinkage estimation approach. Simulation results for this model corroborate the identifiability and estimability of model parameters. Applications of the methodology to DNA nucleotide sequence data uncover useful discrete latent features that are highly predictive of sequence types. The proposed framework provides a recipe for interpretable unsupervised learning of discrete data, and can be a useful alternative to popular machine learning methods.

相關內容

The rise of mobile AI accelerators allows latency-sensitive applications to execute lightweight Deep Neural Networks (DNNs) on the client side. However, critical applications require powerful models that edge devices cannot host and must therefore offload requests, where the high-dimensional data will compete for limited bandwidth. This work proposes shifting away from focusing on executing shallow layers of partitioned DNNs. Instead, it advocates concentrating the local resources on variational compression optimized for machine interpretability. We introduce a novel framework for resource-conscious compression models and extensively evaluate our method in an environment reflecting the asymmetric resource distribution between edge devices and servers. Our method achieves 60\% lower bitrate than a state-of-the-art SC method without decreasing accuracy and is up to 16x faster than offloading with existing codec standards.

This paper proposes a methodology for discovering meaningful properties in data by exploring the latent space of unsupervised deep generative models. We combine manipulation of individual latent variables to extreme values outside the training range with methods inspired by causal inference into an approach we call causal disentanglement with extreme values (CDEV) and show that this approach yields insights for model interpretability. Using this technique, we can infer what properties of unknown data the model encodes as meaningful. We apply the methodology to test what is meaningful in the communication system of sperm whales, one of the most intriguing and understudied animal communication systems. We train a network that has been shown to learn meaningful representations of speech and test whether we can leverage such unsupervised learning to decipher the properties of another vocal communication system for which we have no ground truth. The proposed technique suggests that sperm whales encode information using the number of clicks in a sequence, the regularity of their timing, and audio properties such as the spectral mean and the acoustic regularity of the sequences. Some of these findings are consistent with existing hypotheses, while others are proposed for the first time. We also argue that our models uncover rules that govern the structure of communication units in the sperm whale communication system and apply them while generating innovative data not shown during training. This paper suggests that an interpretation of the outputs of deep neural networks with causal methodology can be a viable strategy for approaching data about which little is known and presents another case of how deep learning can limit the hypothesis space. Finally, the proposed approach combining latent space manipulation and causal inference can be extended to other architectures and arbitrary datasets.

We consider the problem of distribution-free conformal prediction and the criterion of group conditional validity. This criterion is motivated by many practical scenarios including hidden stratification and group fairness. Existing methods achieve such guarantees under either restrictive grouping structure or distributional assumptions, or they are overly-conservative under heteroskedastic noise. We propose a simple reduction to the problem of achieving validity guarantees for individual populations by leveraging algorithms for a problem called multi-group learning. This allows us to port theoretical guarantees from multi-group learning to obtain obtain sample complexity guarantees for conformal prediction. We also provide a new algorithm for multi-group learning for groups with hierarchical structure. Using this algorithm in our reduction leads to improved sample complexity guarantees with a simpler predictor structure.

The continuously growing number of objects orbiting around the Earth is expected to be accompanied by an increasing frequency of objects re-entering the Earth's atmosphere. Many of these re-entries will be uncontrolled, making their prediction challenging and subject to several uncertainties. Traditionally, re-entry predictions are based on the propagation of the object's dynamics using state-of-the-art modelling techniques for the forces acting on the object. However, modelling errors, particularly related to the prediction of atmospheric drag may result in poor prediction accuracies. In this context, we explore the possibility to perform a paradigm shift, from a physics-based approach to a data-driven approach. To this aim, we present the development of a deep learning model for the re-entry prediction of uncontrolled objects in Low Earth Orbit (LEO). The model is based on a modified version of the Sequence-to-Sequence architecture and is trained on the average altitude profile as derived from a set of Two-Line Element (TLE) data of over 400 bodies. The novelty of the work consists in introducing in the deep learning model, alongside the average altitude, three new input features: a drag-like coefficient (B*), the average solar index, and the area-to-mass ratio of the object. The developed model is tested on a set of objects studied in the Inter-Agency Space Debris Coordination Committee (IADC) campaigns. The results show that the best performances are obtained on bodies characterised by the same drag-like coefficient and eccentricity distribution as the training set.

Probabilistic diffusion models have achieved state-of-the-art results for image synthesis, inpainting, and text-to-image tasks. However, they are still in the early stages of generating complex 3D shapes. This work proposes Diffusion-SDF, a generative model for shape completion, single-view reconstruction, and reconstruction of real-scanned point clouds. We use neural signed distance functions (SDFs) as our 3D representation to parameterize the geometry of various signals (e.g., point clouds, 2D images) through neural networks. Neural SDFs are implicit functions and diffusing them amounts to learning the reversal of their neural network weights, which we solve using a custom modulation module. Extensive experiments show that our method is capable of both realistic unconditional generation and conditional generation from partial inputs. This work expands the domain of diffusion models from learning 2D, explicit representations, to 3D, implicit representations.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司