Feature attribution methods have become a staple method to disentangle the complex behavior of black box models. Despite their success, some scholars have argued that such methods suffer from a serious flaw: they do not allow a reliable interpretation in terms of human concepts. Simply put, visualizing an array of feature contributions is not enough for humans to conclude something about a model's internal representations, and confirmation bias can trick users into false beliefs about model behavior. We argue that a structured approach is required to test whether our hypotheses on the model are confirmed by the feature attributions. This is what we call the "semantic match" between human concepts and (sub-symbolic) explanations. Building on the conceptual framework put forward in Cin\`a et al. [2023], we propose a structured approach to evaluate semantic match in practice. We showcase the procedure in a suite of experiments spanning tabular and image data, and show how the assessment of semantic match can give insight into both desirable (e.g., focusing on an object relevant for prediction) and undesirable model behaviors (e.g., focusing on a spurious correlation). We couple our experimental results with an analysis on the metrics to measure semantic match, and argue that this approach constitutes the first step towards resolving the issue of confirmation bias in XAI.
We present a novel approach for finding multiple noisily embedded template graphs in a very large background graph. Our method builds upon the graph-matching-matched-filter technique proposed in Sussman et al., with the discovery of multiple diverse matchings being achieved by iteratively penalizing a suitable node-pair similarity matrix in the matched filter algorithm. In addition, we propose algorithmic speed-ups that greatly enhance the scalability of our matched-filter approach. We present theoretical justification of our methodology in the setting of correlated Erdos-Renyi graphs, showing its ability to sequentially discover multiple templates under mild model conditions. We additionally demonstrate our method's utility via extensive experiments both using simulated models and real-world dataset, include human brain connectomes and a large transactional knowledge base.
Neural networks have been able to generate high-quality single-sentence speech with high expressiveness. However, it remains a challenge concerning paragraph-level speech synthesis due to the need for coherent acoustic features while delivering sentence styles. Meanwhile, training those models directly on over-length speech suffers from degrading synthesizing quality. This paper proposes a high-quality and expressive paragraph speech synthesis system with a multi-step variational autoencoder. Our approach employs multi-step latent variables to capture speech information and predicts them with text information separately at different grammatical levels. We also propose a three-step training method to promote the performance of the decoupling process. The proposed TTS model was trained on a single-speaker French audiobook corpus released at Blizzard Challenge 2023. Experimental results underscore the significant superiority of our system over baseline models.
There have been recent adversarial attacks that are difficult to find. These new adversarial attacks methods may pose challenges to current deep learning cyber defense systems and could influence the future defense of cyberattacks. The authors focus on this domain in this research paper. They explore the consequences of vulnerabilities in AI systems. This includes discussing how they might arise, differences between randomized and adversarial examples and also potential ethical implications of vulnerabilities. Moreover, it is important to train the AI systems appropriately when they are in testing phase and getting them ready for broader use.
The design of automatic speech pronunciation assessment can be categorized into closed and open response scenarios, each with strengths and limitations. A system with the ability to function in both scenarios can cater to diverse learning needs and provide a more precise and holistic assessment of pronunciation skills. In this study, we propose a Multi-task Pronunciation Assessment model called MultiPA. MultiPA provides an alternative to Kaldi-based systems in that it has simpler format requirements and better compatibility with other neural network models. Compared with previous open response systems, MultiPA provides a wider range of evaluations, encompassing assessments at both the sentence and word-level. Our experimental results show that MultiPA achieves comparable performance when working in closed response scenarios and maintains more robust performance when directly used for open responses.
Multiple-try Metropolis (MTM) is a popular Markov chain Monte Carlo method with the appealing feature of being amenable to parallel computing. At each iteration, it samples several candidates for the next state of the Markov chain and randomly selects one of them based on a weight function. The canonical weight function is proportional to the target density. We show both theoretically and empirically that this weight function induces pathological behaviours in high dimensions, especially during the convergence phase. We propose to instead use weight functions akin to the locally-balanced proposal distributions of Zanella (2020), thus yielding MTM algorithms that do not exhibit those pathological behaviours. To theoretically analyse these algorithms, we study the high-dimensional performance of ideal schemes that can be thought of as MTM algorithms which sample an infinite number of candidates at each iteration, as well as the discrepancy between such schemes and the MTM algorithms which sample a finite number of candidates. Our analysis unveils a strong distinction between the convergence and stationary phases: in the former, local balancing is crucial and effective to achieve fast convergence, while in the latter, the canonical and novel weight functions yield similar performance. Numerical experiments include an application in precision medicine involving a computationally-expensive forward model, which makes the use of parallel computing within MTM iterations beneficial.
Accurately estimating parameters in complex nonlinear systems is crucial across scientific and engineering fields. We present a novel approach for parameter estimation using a neural network with the Huber loss function. This method taps into deep learning's abilities to uncover parameters governing intricate behaviors in nonlinear equations. We validate our approach using synthetic data and predefined functions that model system dynamics. By training the neural network with noisy time series data, it fine-tunes the Huber loss function to converge to accurate parameters. We apply our method to damped oscillators, Van der Pol oscillators, Lotka-Volterra systems, and Lorenz systems under multiplicative noise. The trained neural network accurately estimates parameters, evident from closely matching latent dynamics. Comparing true and estimated trajectories visually reinforces our method's precision and robustness. Our study underscores the Huber loss-guided neural network as a versatile tool for parameter estimation, effectively uncovering complex relationships in nonlinear systems. The method navigates noise and uncertainty adeptly, showcasing its adaptability to real-world challenges.
Replication studies are increasingly conducted to assess the credibility of scientific findings. Most of these replication attempts target studies with a superiority design, and there is a lack of methodology regarding the analysis of replication studies with alternative types of designs, such as equivalence. In order to fill this gap, we propose two approaches, the two-trials rule and the sceptical TOST procedure, adapted from methods used in superiority settings. Both methods have the same overall Type-I error rate, but the sceptical TOST procedure allows replication success even for non-significant original or replication studies. This leads to a larger project power and other differences in relevant operating characteristics. Both methods can be used for sample size calculation of the replication study, based on the results from the original one. The two methods are applied to data from the Reproducibility Project: Cancer Biology.
The real-time dynamic environment perception has become vital for autonomous robots in crowded spaces. Although the popular voxel-based mapping methods can efficiently represent 3D obstacles with arbitrarily complex shapes, they can hardly distinguish between static and dynamic obstacles, leading to the limited performance of obstacle avoidance. While plenty of sophisticated learning-based dynamic obstacle detection algorithms exist in autonomous driving, the quadcopter's limited computation resources cannot achieve real-time performance using those approaches. To address these issues, we propose a real-time dynamic obstacle tracking and mapping system for quadcopter obstacle avoidance using an RGB-D camera. The proposed system first utilizes a depth image with an occupancy voxel map to generate potential dynamic obstacle regions as proposals. With the obstacle region proposals, the Kalman filter and our continuity filter are applied to track each dynamic obstacle. Finally, the environment-aware trajectory prediction method is proposed based on the Markov chain using the states of tracked dynamic obstacles. We implemented the proposed system with our custom quadcopter and navigation planner. The simulation and physical experiments show that our methods can successfully track and represent obstacles in dynamic environments in real-time and safely avoid obstacles.
The burden of liver tumors is important, ranking as the fourth leading cause of cancer mortality. In case of hepatocellular carcinoma (HCC), the delineation of liver and tumor on contrast-enhanced magnetic resonance imaging (CE-MRI) is performed to guide the treatment strategy. As this task is time-consuming, needs high expertise and could be subject to inter-observer variability there is a strong need for automatic tools. However, challenges arise from the lack of available training data, as well as the high variability in terms of image resolution and MRI sequence. In this work we propose to compare two different pipelines based on anisotropic models to obtain the segmentation of the liver and tumors. The first pipeline corresponds to a baseline multi-class model that performs the simultaneous segmentation of the liver and tumor classes. In the second approach, we train two distinct binary models, one segmenting the liver only and the other the tumors. Our results show that both pipelines exhibit different strengths and weaknesses. Moreover we propose an uncertainty quantification strategy allowing the identification of potential false positive tumor lesions. Both solutions were submitted to the MICCAI 2023 Atlas challenge regarding liver and tumor segmentation.
In this paper, we first present the general propagation multiple-relaxation-time lattice Boltzmann (GPMRT-LB) model and obtain the corresponding macroscopic finite-difference (GPMFD) scheme on conservative moments. Then based on the Maxwell iteration method, we conduct the analysis on the truncation errors and modified equations (MEs) of the GPMRT-LB model and GPMFD scheme at both diffusive and acoustic scalings. For the nonlinear anisotropic convection-diffusion equation (NACDE) and Navier-Stokes equations (NSEs), we also derive the first- and second-order MEs of the GPMRT-LB model and GPMFD scheme. In particular, for the one-dimensional convection-diffusion equation (CDE) with the constant velocity and diffusion coefficient, we can develop a fourth-order GPMRT-LB (F-GPMRT-LB) model and the corresponding fourth-order GPMFD (F-GPMFD) scheme at the diffusive scaling. Finally, two benchmark problems, Gauss hill problem and Poiseuille flow in two-dimensional space, are used to test the GPMRT-LB model and GPMFD scheme, and it is found that the numerical results are not only in good agreement with corresponding analytical solutions, but also have a second-order convergence rate in space. Additionally, a numerical study on one-dimensional CDE also demonstrates that the F-GPMRT-LB model and F-GPMFD scheme can achieve a fourth-order accuracy in space, which is consistent with our theoretical analysis.