Methodologies for evaluating and selecting policies that contribute to the well-being of diverse populations need clarification. To bridge the gap between objective indicators and policies related to well-being, this study shifts from constitutive pluralism based on objective indicators to conceptual pluralism that emphasizes subjective context, develops from subject-object pluralism through individual-group pluralism to WE pluralism, and presents a new policy evaluation method that combines joint fact-finding based on policy plurality. First, to evaluate policies involving diverse stakeholders, I develop from individual subjectivity-objectivity to individual subjectivity and group intersubjectivity, and then move to a narrow-wide WE pluralism in the gradation of I-family-community-municipality-nation-world. Additionally, by referring to some functional forms of well-being, I formulate the dependence of well-being on narrow-wide WE. Finally, given that policies themselves have a plurality of social, ecological, and economic values, I define a set of policies for each of the narrow-wide WE and consider a mapping between the two to provide an evaluation basis. Furthermore, by combining well-being and joint fact-finding on the narrow-wide WE consensus, the policy evaluation method is formulated. The fact-value combined parameter system, combined policy-making approach, and combined impact evaluation are disclosed as examples of implementation. This paper contributes to the realization of a well-being society by bridging philosophical theory and policies based on WE pluralism and presenting a new method of policy evaluation based on subjective context and consensus building.
In this work, we explore a framework for contextual decision-making to study how the relevance and quantity of past data affects the performance of a data-driven policy. We analyze a contextual Newsvendor problem in which a decision-maker needs to trade-off between an underage and an overage cost in the face of uncertain demand. We consider a setting in which past demands observed under ``close by'' contexts come from close by distributions and analyze the performance of data-driven algorithms through a notion of context-dependent worst-case expected regret. We analyze the broad class of Weighted Empirical Risk Minimization (WERM) policies which weigh past data according to their similarity in the contextual space. This class includes classical policies such as ERM, k-Nearest Neighbors and kernel-based policies. Our main methodological contribution is to characterize exactly the worst-case regret of any WERM policy on any given configuration of contexts. To the best of our knowledge, this provides the first understanding of tight performance guarantees in any contextual decision-making problem, with past literature focusing on upper bounds via concentration inequalities. We instead take an optimization approach, and isolate a structure in the Newsvendor loss function that allows to reduce the infinite-dimensional optimization problem over worst-case distributions to a simple line search. This in turn allows us to unveil fundamental insights that were obfuscated by previous general-purpose bounds. We characterize actual guaranteed performance as a function of the contexts, as well as granular insights on the learning curve of algorithms.
The equilibrium configuration of a plasma in an axially symmetric reactor is described mathematically by a free boundary problem associated with the celebrated Grad--Shafranov equation. The presence of uncertainty in the model parameters introduces the need to quantify the variability in the predictions. This is often done by computing a large number of model solutions on a computational grid for an ensemble of parameter values and then obtaining estimates for the statistical properties of solutions. In this study, we explore the savings that can be obtained using multilevel Monte Carlo methods, which reduce costs by performing the bulk of the computations on a sequence of spatial grids that are coarser than the one that would typically be used for a simple Monte Carlo simulation. We examine this approach using both a set of uniformly refined grids and a set of adaptively refined grids guided by a discrete error estimator. Numerical experiments show that multilevel methods dramatically reduce the cost of simulation, with cost reductions typically on the order of 60 or more and possibly as large as 200. Adaptive gridding results in more accurate computation of geometric quantities such as x-points associated with the model.
While summarization has been extensively researched in natural language processing (NLP), cross-lingual cross-temporal summarization (CLCTS) is a largely unexplored area that has the potential to improve cross-cultural accessibility, information sharing, and understanding. This paper comprehensively addresses the CLCTS task, including dataset creation, modeling, and evaluation. We build the first CLCTS corpus, leveraging historical fictive texts and Wikipedia summaries in English and German, and examine the effectiveness of popular transformer end-to-end models with different intermediate task finetuning tasks. Additionally, we explore the potential of ChatGPT for CLCTS as a summarizer and an evaluator. Overall, we report evaluations from humans, ChatGPT, and several recent automatic evaluation metrics where we find our intermediate task finetuned end-to-end models generate bad to moderate quality summaries; ChatGPT as a summarizer (without any finetuning) provides moderate to good quality outputs and as an evaluator correlates moderately with human evaluations though it is prone to giving lower scores. ChatGPT also seems to be very adept at normalizing historical text. We finally test ChatGPT in a scenario with adversarially attacked and unseen source documents and find that ChatGPT is better at omission and entity swap than negating against its prior knowledge.
The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. Consequently, various methods have been proposed for designing MDS matrices, including search and direct methods. While exhaustive search is suitable for small order MDS matrices, direct constructions are preferred for larger orders due to the vast search space involved. In the literature, there has been extensive research on the direct construction of MDS matrices using both recursive and nonrecursive methods. On the other hand, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer compared to MDS matrices. However, no direct construction method is available in the literature for constructing recursive NMDS matrices. This paper introduces some direct constructions of NMDS matrices in both nonrecursive and recursive settings. Additionally, it presents some direct constructions of nonrecursive MDS matrices from the generalized Vandermonde matrices. We propose a method for constructing involutory MDS and NMDS matrices using generalized Vandermonde matrices. Furthermore, we prove some folklore results that are used in the literature related to the NMDS code.
The effectiveness of machine learning in evaluating the creditworthiness of loan applicants has been demonstrated for a long time. However, there is concern that the use of automated decision-making processes may result in unequal treatment of groups or individuals, potentially leading to discriminatory outcomes. This paper seeks to address this issue by evaluating the effectiveness of 12 leading bias mitigation methods across 5 different fairness metrics, as well as assessing their accuracy and potential profitability for financial institutions. Through our analysis, we have identified the challenges associated with achieving fairness while maintaining accuracy and profitabiliy, and have highlighted both the most successful and least successful mitigation methods. Ultimately, our research serves to bridge the gap between experimental machine learning and its practical applications in the finance industry.
Prediction-oriented machine learning is becoming increasingly valuable to organizations, as it may drive applications in crucial business areas. However, decision-makers from companies across various industries are still largely reluctant to employ applications based on modern machine learning algorithms. We ascribe this issue to the widely held view on advanced machine learning algorithms as "black boxes" whose complexity does not allow for uncovering the factors that drive the output of a corresponding system. To contribute to overcome this adoption barrier, we argue that research in information systems should devote more attention to the design of prototypical prediction-oriented machine learning applications (i.e., artifacts) whose predictions can be explained to human decision-makers. However, despite the recent emergence of a variety of tools that facilitate the development of such artifacts, there has so far been little research on their development. We attribute this research gap to the lack of methodological guidance to support the creation of these artifacts. For this reason, we develop a methodology which unifies methodological knowledge from design science research and predictive analytics with state-of-the-art approaches to explainable artificial intelligence. Moreover, we showcase the methodology using the example of price prediction in the sharing economy (i.e., on Airbnb).
In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.
Automated Driving Systems (ADS) have made great achievements in recent years thanks to the efforts from both academia and industry. A typical ADS is composed of multiple modules, including sensing, perception, planning and control, which brings together the latest advances in multiple domains. Despite these achievements, safety assurance of the systems is still of great significance, since the unsafe behavior of ADS can bring catastrophic consequences and unacceptable economic and social losses. Testing is an important approach to system validation for the deployment in practice; in the context of ADS, it is extremely challenging, due to the system complexity and multidisciplinarity. There has been a great deal of literature that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical advances. However, most of these surveys focus on the system-level testing that is performed within software simulators, and thereby ignore the distinct features of individual modules. In this paper, we provide a comprehensive survey on the existing ADS testing literature, which takes into account both module-level and system-level testing. Specifically, we make the following contributions: (1) we build a threat model that reveals the potential safety threats for each module of an ADS; (2) we survey the module-level testing techniques for ADS and highlight the technical differences affected by the properties of the modules; (3) we also survey the system-level testing techniques, but we focus on empirical studies that take a bird's-eye view on the system, the problems due to the collaborations between modules, and the gaps between ADS testing in simulators and real world; (4) we identify the challenges and opportunities in ADS testing, which facilitates the future research in this field.
Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.
Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.