We propose a novel subset selection task called min-distance diverse data summarization ($\textsf{MDDS}$), which has a wide variety of applications in machine learning, e.g., data sampling and feature selection. Given a set of points in a metric space, the goal is to maximize an objective that combines the total utility of the points and a diversity term that captures the minimum distance between any pair of selected points, subject to the constraint $|S| \le k$. For example, the points may correspond to training examples in a data sampling problem, e.g., learned embeddings of images extracted from a deep neural network. This work presents the $\texttt{GIST}$ algorithm, which achieves a $\frac{2}{3}$-approximation guarantee for $\textsf{MDDS}$ by approximating a series of maximum independent set problems with a bicriteria greedy algorithm. We also prove a complementary $(\frac{2}{3}+\varepsilon)$-hardness of approximation, for any $\varepsilon > 0$. Finally, we provide an empirical study that demonstrates $\texttt{GIST}$ outperforms existing methods for $\textsf{MDDS}$ on synthetic data, and also for a real-world image classification experiment the studies single-shot subset selection for ImageNet.
Tracking and segmenting multiple similar objects with complex or separate parts in long-term videos is inherently challenging due to the ambiguity of target parts and identity confusion caused by occlusion, background clutter, and long-term variations. In this paper, we propose a robust video object segmentation framework equipped with spatial-semantic features and discriminative object queries to address the above issues. Specifically, we construct a spatial-semantic network comprising a semantic embedding block and spatial dependencies modeling block to associate the pretrained ViT features with global semantic features and local spatial features, providing a comprehensive target representation. In addition, we develop a masked cross-attention module to generate object queries that focus on the most discriminative parts of target objects during query propagation, alleviating noise accumulation and ensuring effective long-term query propagation. The experimental results show that the proposed method set a new state-of-the-art performance on multiple datasets, including the DAVIS2017 test (89.1%), YoutubeVOS 2019 (88.5%), MOSE (75.1%), LVOS test (73.0%), and LVOS val (75.1%), which demonstrate the effectiveness and generalization capacity of the proposed method. We will make all source code and trained models publicly available.
Binary similarity involves determining whether two binary programs exhibit similar functionality, often originating from the same source code. In this work, we propose VexIR2Vec, an approach for binary similarity using VEX-IR, an architecture-neutral Intermediate Representation (IR). We extract the embeddings from sequences of basic blocks, termed peepholes, derived by random walks on the control-flow graph. The peepholes are normalized using transformations inspired by compiler optimizations. The VEX-IR Normalization Engine mitigates, with these transformations, the architectural and compiler-induced variations in binaries while exposing semantic similarities. We then learn the vocabulary of representations at the entity level of the IR using the knowledge graph embedding techniques in an unsupervised manner. This vocabulary is used to derive function embeddings for similarity assessment using VexNet, a feed-forward Siamese network designed to position similar functions closely and separate dissimilar ones in an n-dimensional space. This approach is amenable for both diffing and searching tasks, ensuring robustness against Out-Of-Vocabulary (OOV) issues. We evaluate VexIR2Vec on a dataset comprising 2.7M functions and 15.5K binaries from 7 projects compiled across 12 compilers targeting x86 and ARM architectures. In diffing experiments, VexIR2Vec outperforms the nearest baselines by $40\%$, $18\%$, $21\%$, and $60\%$ in cross-optimization, cross-compilation, cross-architecture, and obfuscation settings, respectively. In the searching experiment, VexIR2Vec achieves a mean average precision of $0.76$, outperforming the nearest baseline by $46\%$. Our framework is highly scalable and is built as a lightweight, multi-threaded, parallel library using only open-source tools. VexIR2Vec is $3.1$-$3.5 \times$ faster than the closest baselines and orders-of-magnitude faster than other tools.
CPU performance prediction, which involves forecasting the performance scores of a CPU based on its hardware characteristics during its operation, is a critical technology for computational system design and resource management in the big data era. However, this research field currently faces two significant challenges. First, collecting real-world data is challenging due to the wide variety of CPU products on the market and the highly specialized nature of relevant hardware characteristics. In the research process, this field lacks a standard dataset with unified hardware characteristics, wide data coverage, and comprehensive benchmarks. Second, existing methods based on hardware simulation models or machine learning exhibit notable shortcomings, such as lengthy simulation test cycles and low prediction accuracy. To bridge these gaps, we first collect, preprocess, and standardize historical data from the 4th Generation Intel Xeon Scalable Processors across multiple benchmark suites to create a new dataset, named PerfCastDB. Subsequently, we design a deep learning based model called Nova CPU Performance Predictor (NCPP) as the baseline for this new dataset. The NCPP network is designed based on group attention mechanism. It effectively quantifies the implicit relationships between hardware characteristics within and across groups and comprehensively models the impact of various hardware characteristics on CPU performance prediction. We conduct comparative experiments using the proposed PerfCastDB dataset. Compared to existing approaches, NCPP achieves superior evaluation results, demonstrating its effectiveness. Furthermore, we have open-sourced part of the dataset and the NCPP network code to facilitate subsequent research. The resources can be accessed at //github.com/xiaoman-liu/NCPP.
Serving large language models (LLMs) in production can incur substantial costs, which has prompted recent advances in inference system optimizations. Today, these systems are evaluated against conventional latency and throughput metrics (eg. TTFT, TBT, Normalised Latency and TPOT). However, these metrics fail to fully capture the nuances of LLM inference, leading to an incomplete assessment of user-facing performance crucial for real-time applications such as chat and translation. In this paper, we first identify the pitfalls of current performance metrics in evaluating LLM inference systems. We then propose Metron, a comprehensive performance evaluation framework that includes fluidity-index -- a novel metric designed to reflect the intricacies of the LLM inference process and its impact on real-time user experience. Finally, we evaluate various existing open-source platforms and model-as-a-service offerings using Metron, discussing their strengths and weaknesses. Metron is available at //github.com/project-metron/metron.
We address the challenge of online convex optimization where the objective function's gradient exhibits sparsity, indicating that only a small number of dimensions possess non-zero gradients. Our aim is to leverage this sparsity to obtain useful estimates of the objective function's gradient even when the only information available is a limited number of function samples. Our motivation stems from distributed queueing systems like microservices-based applications, characterized by request-response workloads. Here, each request type proceeds through a sequence of microservices to produce a response, and the resource allocation across the collection of microservices is controlled to balance end-to-end latency with resource costs. While the number of microservices is substantial, the latency function primarily reacts to resource changes in a few, rendering the gradient sparse. Our proposed method, CONGO (Compressive Online Gradient Optimization), combines simultaneous perturbation with compressive sensing to estimate gradients. We establish analytical bounds on the requisite number of compressive sensing samples per iteration to maintain bounded bias of gradient estimates, ensuring sub-linear regret. By exploiting sparsity, we reduce the samples required per iteration to match the gradient's sparsity, rather than the problem's original dimensionality. Numerical experiments and real-world microservices benchmarks demonstrate CONGO's superiority over multiple stochastic gradient descent approaches, as it quickly converges to performance comparable to policies pre-trained with workload awareness.
Flexible antenna arrays (FAAs), distinguished by their rotatable, bendable, and foldable properties, are extensively employed in flexible radio systems to achieve customized radiation patterns. This paper aims to illustrate that FAAs, capable of dynamically adjusting surface shapes, can enhance communication performances with both omni-directional and directional antenna patterns, in terms of multi-path channel power and channel angle Cram\'{e}r-Rao bounds. To this end, we develop a mathematical model that elucidates the impacts of the variations in antenna positions and orientations as the array transitions from a flat to a rotated, bent, and folded state, all contingent on the flexible degree-of-freedom. Moreover, since the array shape adjustment operates across the entire beamspace, especially with directional patterns, we discuss the sum-rate in the multi-sector base station that covers the $360^\circ$ communication area. Particularly, to thoroughly explore the multi-sector sum-rate, we propose separate flexible precoding (SFP), joint flexible precoding (JFP), and semi-joint flexible precoding (SJFP), respectively. In our numerical analysis comparing the optimized FAA to the fixed uniform planar array, we find that the bendable FAA achieves a remarkable $156\%$ sum-rate improvement compared to the fixed planar array in the case of JFP with the directional pattern. Furthermore, the rotatable FAA exhibits notably superior performance in SFP and SJFP cases with omni-directional patterns, with respective $35\%$ and $281\%$.
We present an algorithm and package, Redistributor, which forces a collection of scalar samples to follow a desired distribution. When given independent and identically distributed samples of some random variable $S$ and the continuous cumulative distribution function of some desired target $T$, it provably produces a consistent estimator of the transformation $R$ which satisfies $R(S)=T$ in distribution. As the distribution of $S$ or $T$ may be unknown, we also include algorithms for efficiently estimating these distributions from samples. This allows for various interesting use cases in image processing, where Redistributor serves as a remarkably simple and easy-to-use tool that is capable of producing visually appealing results. For color correction it outperforms other model-based methods and excels in achieving photorealistic style transfer, surpassing deep learning methods in content preservation. The package is implemented in Python and is optimized to efficiently handle large datasets, making it also suitable as a preprocessing step in machine learning. The source code is available at //github.com/paloha/redistributor.
Blockchain databases have attracted widespread attention but suffer from poor scalability due to underlying non-scalable blockchains. While blockchain sharding is necessary for a scalable blockchain database, it poses a new challenge named on-chain cross-shard database services. Each cross-shard database service (e.g., cross-shard queries or inter-shard load balancing) involves massive cross-shard data exchanges, while the existing cross-shard mechanisms need to process each cross-shard data exchange via the consensus of all nodes in the related shards (i.e., on-chain) to resist a Byzantine environment of blockchain, which eliminates sharding benefits. To tackle the challenge, this paper presents GriDB, the first scalable blockchain database, by designing a novel off-chain cross-shard mechanism for efficient cross-shard database services. Borrowing the idea of off-chain payments, GriDB delegates massive cross-shard data exchange to a few nodes, each of which is randomly picked from a different shard. Considering the Byzantine environment, the untrusted delegates cooperate to generate succinct proof for cross-shard data exchanges, while the consensus is only responsible for the low-cost proof verification. However, different from payments, the database services' verification has more requirements (e.g., completeness, correctness, freshness, and availability); thus, we introduce several new authenticated data structures (ADS). Particularly, we utilize consensus to extend the threat model and reduce the complexity of traditional accumulator-based ADS for verifiable cross-shard queries with a rich set of relational operators. Moreover, we study the necessity of inter-shard load balancing for a scalable blockchain database and design an off-chain and live approach for both efficiency and availability during balancing.
CPU performance prediction, which involves forecasting the performance scores of a CPU based on its hardware characteristics during its operation, is a critical technology for computational system design and resource management in the big data era. However, this research field currently faces two significant challenges. First, collecting real-world data is challenging due to the wide variety of CPU products on the market and the highly specialized nature of relevant hardware characteristics. In the research process, this field lacks a standard dataset with unified hardware characteristics, wide data coverage, and comprehensive benchmarks. Second, existing methods based on hardware simulation models or machine learning exhibit notable shortcomings, such as lengthy simulation test cycles and low prediction accuracy. To bridge these gaps, we first collect, preprocess, and standardize historical data from the 4th Generation Intel Xeon Scalable Processors across multiple benchmark suites to create a new dataset, named PerfCastDB. Subsequently, we design a deep learning based model called Nova CPU Performance Predictor (NCPP) as the baseline for this new dataset. The NCPP network is designed based on group attention mechanism. It effectively quantifies the implicit relationships between hardware characteristics within and across groups and comprehensively models the impact of various hardware characteristics on CPU performance prediction. We conduct comparative experiments using the proposed PerfCastDB dataset. Compared to existing approaches, NCPP achieves superior evaluation results, demonstrating its effectiveness. Furthermore, we have open-sourced part of the dataset and the NCPP network code to facilitate subsequent research. The resources can be accessed at //github.com/xiaoman-liu/NCPP.
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.