Numerical interactions leading to users sharing textual content published by others are naturally represented by a network where the individuals are associated with the nodes and the exchanged texts with the edges. To understand those heterogeneous and complex data structures, clustering nodes into homogeneous groups as well as rendering a comprehensible visualisation of the data is mandatory. To address both issues, we introduce Deep-LPTM, a model-based clustering strategy relying on a variational graph auto-encoder approach as well as a probabilistic model to characterise the topics of discussion. Deep-LPTM allows to build a joint representation of the nodes and of the edges in two embeddings spaces. The parameters are inferred using a variational inference algorithm. We also introduce IC2L, a model selection criterion specifically designed to choose models with relevant clustering and visualisation properties. An extensive benchmark study on synthetic data is provided. In particular, we find that Deep-LPTM better recovers the partitions of the nodes than the state-of-the art ETSBM and STBM. Eventually, the emails of the Enron company are analysed and visualisations of the results are presented, with meaningful highlights of the graph structure.
In cellular networks, it can become necessary for authorities to physically locate user devices for tracking criminals or illegal devices. While cellular operators can provide authorities with cell information the device is camping on, fine-grained localization is still required. Therefore, the authorized agents trace the device by monitoring its uplink signals. However, tracking the uplink signal source without its cooperation is challenging even for operators and authorities. Particularly, three challenges remain for fine-grained localization: i) localization works only if devices generate enough uplink traffic reliably over time, ii) the target device might generate its uplink traffic with significantly low power, and iii) cellular repeater may add too much noise to true uplink signals. While these challenges present practical hurdles for localization, they have been overlooked in prior works. In this work, we investigate the impact of these real-world challenges on cellular localization and propose an Uncooperative Multiangulation Attack (UMA) that addresses these challenges. UMA can 1) force a target device to transmit traffic continuously, 2) boost the target's signal strength to the maximum, and 3) uniquely distinguish traffic from the target and the repeaters. Notably, the UMA technique works without privilege on cellular operators or user devices, which makes it operate on any LTE network. Our evaluations show that UMA effectively resolves the challenges in real-world environments when devices are not cooperative for localization. Our approach exploits the current cellular design vulnerabilities, which we have responsibly disclosed to GSMA.
Conversational Recommender System (CRS) interacts with users through natural language to understand their preferences and provide personalized recommendations in real-time. CRS has demonstrated significant potential, prompting researchers to address the development of more realistic and reliable user simulators as a key focus. Recently, the capabilities of Large Language Models (LLMs) have attracted a lot of attention in various fields. Simultaneously, efforts are underway to construct user simulators based on LLMs. While these works showcase innovation, they also come with certain limitations that require attention. In this work, we aim to analyze the limitations of using LLMs in constructing user simulators for CRS, to guide future research. To achieve this goal, we conduct analytical validation on the notable work, iEvaLM. Through multiple experiments on two widely-used datasets in the field of conversational recommendation, we highlight several issues with the current evaluation methods for user simulators based on LLMs: (1) Data leakage, which occurs in conversational history and the user simulator's replies, results in inflated evaluation results. (2) The success of CRS recommendations depends more on the availability and quality of conversational history than on the responses from user simulators. (3) Controlling the output of the user simulator through a single prompt template proves challenging. To overcome these limitations, we propose SimpleUserSim, employing a straightforward strategy to guide the topic toward the target items. Our study validates the ability of CRS models to utilize the interaction information, significantly improving the recommendation results.
How can we effectively model, analyze, and comprehend user interactions and various attributes within a social media platform based on post-comment relationship? In this study, we propose a novel graph-based approach to model and analyze user interactions within a social media platform based on post-comment relationship. We construct a user interaction graph from social media data and analyze it to gain insights into community dynamics, user behavior, and content preferences. Our investigation reveals that while 56.05% of the active users are strongly connected within the community, only 0.8% of them significantly contribute to its dynamics. Moreover, we observe temporal variations in community activity, with certain periods experiencing heightened engagement. Additionally, our findings highlight a correlation between user activity and popularity showing that more active users are generally more popular. Alongside these, a preference for positive and informative content is also observed where 82.41% users preferred positive and informative content. Overall, our study provides a comprehensive framework for understanding and managing online communities, leveraging graph-based techniques to gain valuable insights into user behavior and community dynamics.
As Machine Learning systems become increasingly popular across diverse application domains, including those with direct human implications, the imperative of equity and algorithmic fairness has risen to prominence in the Artificial Intelligence community. On the other hand, in the context of Shared Micromobility Systems, the exploration of fairness-oriented approaches remains limited. Addressing this gap, we introduce a pioneering investigation into the balance between performance optimization and algorithmic fairness in the operation and control of Shared Micromobility Services. Our study leverages the Q-Learning algorithm in Reinforcement Learning, benefiting from its convergence guarantees to ensure the robustness of our proposed approach. Notably, our methodology stands out for its ability to achieve equitable outcomes, as measured by the Gini index, across different station categories--central, peripheral, and remote. Through strategic rebalancing of vehicle distribution, our approach aims to maximize operator performance while simultaneously upholding fairness principles for users. In addition to theoretical insights, we substantiate our findings with a case study or simulation based on synthetic data, validating the efficacy of our approach. This paper underscores the critical importance of fairness considerations in shaping control strategies for Shared Micromobility Services, offering a pragmatic framework for enhancing equity in urban transportation systems.
Edge computing has become a very popular service that enables mobile devices to run complex tasks with the help of network-based computing resources. However, edge clouds are often resource-constrained, which makes resource allocation a challenging issue. In addition, edge cloud servers must make allocation decisions with only limited information available, since the arrival of future client tasks might be impossible to predict, and the states and behavior of neighboring servers might be obscured. We focus on a distributed resource allocation method in which servers operate independently and do not communicate with each other, but interact with clients (tasks) to make allocation decisions. We follow a two-round bidding approach to assign tasks to edge cloud servers, and servers are allowed to preempt previous tasks to allocate more useful ones. We evaluate the performance of our system using realistic simulations and real-world trace data from a high-performance computing cluster. Results show that our heuristic improves system-wide performance by $20-25\%$ over previous work when accounting for the time taken by each approach. In this way, an ideal trade-off between performance and speed is achieved.
We present a novel approach that aims to address both safety and stability of a haptic teleoperation system within a framework of Haptic Shared Autonomy (HSA). We use Control Barrier Functions (CBFs) to generate the control input that follows the user's input as closely as possible while guaranteeing safety. In the context of stability of the human-in-the-loop system, we limit the force feedback perceived by the user via a small $L_2$-gain, which is achieved by limiting the control and the force feedback via a differential constraint. Specifically, with the property of HSA, we propose two pathways to design the control and the force feedback: Sequential Control Force (SCF) and Joint Control Force (JCF). Both designs can achieve safety and stability but with different responses to the user's commands. We conducted experimental simulations to evaluate and investigate the properties of the designed methods. We also tested the proposed method on a physical quadrotor UAV and a haptic interface.
DeepFakes, which refer to AI-generated media content, have become an increasing concern due to their use as a means for disinformation. Detecting DeepFakes is currently solved with programmed machine learning algorithms. In this work, we investigate the capabilities of multimodal large language models (LLMs) in DeepFake detection. We conducted qualitative and quantitative experiments to demonstrate multimodal LLMs and show that they can expose AI-generated images through careful experimental design and prompt engineering. This is interesting, considering that LLMs are not inherently tailored for media forensic tasks, and the process does not require programming. We discuss the limitations of multimodal LLMs for these tasks and suggest possible improvements.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.