亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper identifies two kinds of redundancy in the current VideoQA paradigm. Specifically, the current video encoders tend to holistically embed all video clues at different granularities in a hierarchical manner, which inevitably introduces \textit{neighboring-frame redundancy} that can overwhelm detailed visual clues at the object level. Subsequently, prevailing vision-language fusion designs introduce the \textit{cross-modal redundancy} by exhaustively fusing all visual elements with question tokens without explicitly differentiating their pairwise vision-language interactions, thus making a pernicious impact on the answering. To this end, we propose a novel transformer-based architecture, that aims to model VideoQA in a redundancy-aware manner. To address the neighboring-frame redundancy, we introduce a video encoder structure that emphasizes the object-level change in neighboring frames, while adopting an out-of-neighboring message-passing scheme that imposes attention only on distant frames. As for the cross-modal redundancy, we equip our fusion module with a novel adaptive sampling, which explicitly differentiates the vision-language interactions by identifying a small subset of visual elements that exclusively support the answer. Upon these advancements, we find this \underline{R}edundancy-\underline{a}ware trans\underline{former} (RaFormer) can achieve state-of-the-art results on multiple VideoQA benchmarks.

相關內容

This paper deals with the Multi-robot Exploration (MRE) under communication constraints problem. We propose a novel intermittent rendezvous method that allows robots to explore an unknown environment while sharing maps at rendezvous locations through agreements. In our method, robots update the agreements to spread the rendezvous locations during the exploration and prioritize exploring unknown areas near them. To generate the agreements automatically, we reduced the MRE to instances of the Job Shop Scheduling Problem (JSSP) and ensured intermittent communication through a temporal connectivity graph. We evaluate our method in simulation in various virtual urban environments and a Gazebo simulation using the Robot Operating System (ROS). Our results suggest that our method can be better than using relays or maintaining intermittent communication with a base station since we can explore faster without additional hardware to create a relay network.

Text-conditional image editing is a very useful task that has recently emerged with immeasurable potential. Most current real image editing methods first need to complete the reconstruction of the image, and then editing is carried out by various methods based on the reconstruction. Most methods use DDIM Inversion for reconstruction, however, DDIM Inversion often fails to guarantee reconstruction performance, i.e., it fails to produce results that preserve the original image content. To address the problem of reconstruction failure, we propose FEC, which consists of three sampling methods, each designed for different editing types and settings. Our three methods of FEC achieve two important goals in image editing task: 1) ensuring successful reconstruction, i.e., sampling to get a generated result that preserves the texture and features of the original real image. 2) these sampling methods can be paired with many editing methods and greatly improve the performance of these editing methods to accomplish various editing tasks. In addition, none of our sampling methods require fine-tuning of the diffusion model or time-consuming training on large-scale datasets. Hence the cost of time as well as the use of computer memory and computation can be significantly reduced.

Knowledge Tracing (KT) aims to track proficiency based on a question-solving history, allowing us to offer a streamlined curriculum. Recent studies actively utilize attention-based mechanisms to capture the correlation between questions and combine it with the learner's characteristics for responses. However, our empirical study shows that existing attention-based KT models neglect the learner's forgetting behavior, especially as the interaction history becomes longer. This problem arises from the bias that overprioritizes the correlation of questions while inadvertently ignoring the impact of forgetting behavior. This paper proposes a simple-yet-effective solution, namely Forgetting-aware Linear Bias (FoLiBi), to reflect forgetting behavior as a linear bias. Despite its simplicity, FoLiBi is readily equipped with existing attentive KT models by effectively decomposing question correlations with forgetting behavior. FoLiBi plugged with several KT models yields a consistent improvement of up to 2.58% in AUC over state-of-the-art KT models on four benchmark datasets.

This paper presents algorithms and pseudocode for encoding and decoding 3D Hilbert orderings.

Memory interference may heavily inflate task execution times in Heterogeneous Systems-on-Chips (HeSoCs). Knowing worst-case interference is consequently fundamental for supporting the correct execution of time-sensitive applications. In most of the literature, worst-case interference is assumed to be generated by, and therefore is estimated through read-intensive synthetic workloads with no caching. Yet these workloads do not always generate worst-case interference. This is the consequence of the general results reported in this work. By testing on multiple architectures, we determined that the highest interference generation traffic pattern is actually hardware dependant, and that making assumptions could lead to a severe underestimation of the worst-case (in our case, of more than 9x).

Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN models, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the user's embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.

In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司