亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents algorithms and pseudocode for encoding and decoding 3D Hilbert orderings.

相關內容

We consider two popular approaches to Knowledge Graph Completion (KGC): textual models that rely on textual entity descriptions, and structure-based models that exploit the connectivity structure of the Knowledge Graph (KG). Preliminary experiments show that these approaches have complementary strengths: structure-based models perform well when the gold answer is easily reachable from the query head in the KG, while textual models exploit descriptions to give good performance even when the gold answer is not reachable. In response, we explore ensembling as a way of combining the best of both approaches. We propose a novel method for learning query-dependent ensemble weights by using the distributions of scores assigned by individual models to all candidate entities. Our ensemble baseline achieves state-of-the-art results on three standard KGC datasets, with up to 6.8 pt MRR and 8.3 pt Hits@1 gains over best individual models.

In this paper we are proposing classification algorithm for multifrequency Polarimetric Synthetic Aperture Radar (PolSAR) image. Using PolSAR decomposition algorithms 33 features are extracted from each frequency band of the given image. Then, a two-layer autoencoder is used to reduce the dimensionality of input feature vector while retaining useful features of the input. This reduced dimensional feature vector is then applied to generate superpixels using simple linear iterative clustering (SLIC) algorithm. Next, a robust feature representation is constructed using both pixel as well as superpixel information. Finally, softmax classifier is used to perform classification task. The advantage of using superpixels is that it preserves spatial information between neighbouring PolSAR pixels and therefore minimises the effect of speckle noise during classification. Experiments have been conducted on Flevoland dataset and the proposed method was found to be superior to other methods available in the literature.

This paper presents a comprehensive evaluation of the code generation capabilities of ChatGPT, a prominent large language model, compared to human programmers. A novel dataset of 131 code-generation prompts across 5 categories was curated to enable robust analysis. Code solutions were generated by both ChatGPT and humans for all prompts, resulting in 262 code samples. A meticulous manual assessment methodology prioritized evaluating correctness, comprehensibility, and security using 14 established code quality metrics. The key findings reveal ChatGPT's strengths in crafting concise, efficient code with advanced constructs, showcasing strengths in data analysis tasks (93.1% accuracy) but limitations in visual-graphical challenges. Comparative analysis with human code highlights ChatGPT's inclination towards modular design and superior error handling. Additionally, machine learning models effectively distinguished ChatGPT from human code with up to 88% accuracy, suggesting detectable coding style disparities. By providing profound insights into ChatGPT's code generation capabilities and limitations through quantitative metrics and qualitative analysis, this study makes valuable contributions toward advancing AI-based programming assistants. The curated dataset and methodology offer a robust foundation for future research in this nascent domain. All data and codes are available on //github.com/DSAatUSU/ChatGPT-promises-and-pitfalls.

This work presents a novel tactile perception-based method, named T-NT, for performing the needle-threading task, an application of deformable linear object (DLO) manipulation. This task is divided into two main stages: Tail-end Finding and Tail-end Insertion. In the first stage, the agent traces the contour of the thread twice using vision-based tactile sensors mounted on the gripper fingers. The two-run tracing is to locate the tail-end of the thread. In the second stage, it employs a tactile-guided reinforcement learning (RL) model to drive the robot to insert the thread into the target needle eyelet. The RL model is trained in a Unity-based simulated environment. The simulation environment supports tactile rendering which can produce realistic tactile images and thread modeling. During insertion, the position of the poke point and the center of the eyelet are obtained through a pre-trained segmentation model, Grounded-SAM, which predicts the masks for both the needle eye and thread imprints. These positions are then fed into the reinforcement learning model, aiding in a smoother transition to real-world applications. Extensive experiments on real robots are conducted to demonstrate the efficacy of our method. More experiments and videos can be found in the supplementary materials and on the website: //sites.google.com/view/tac-needlethreading.

We develop new list decoding algorithms for Tanner codes and distance-amplified codes based on bipartite spectral expanders. We show that proofs exhibiting lower bounds on the minimum distance of these codes can be used as certificates discoverable by relaxations in the Sum-of-Squares (SoS) semidefinite programming hierarchy. Combining these certificates with certain entropic proxies to ensure that the solutions to the relaxations cover the entire list, then leads to algorithms for list decoding several families of codes up to the Johnson bound. We prove the following: - We show that the LDPC Tanner codes of Sipser-Spielman [IEEE Trans. Inf. Theory 1996] and Z\'{e}mor [IEEE Trans. Inf. Theory 2001] with alphabet size $q$, block-length $n$ and distance $\delta$, based on an expander graph with degree $d$, can be list-decoded up to distance $\mathcal{J}_q(\delta) - \epsilon$ in time $n^{O_{d,q}(1/\epsilon^4)}$, where $\mathcal{J}_q(\delta)$ denotes the Johnson bound. - We show that the codes obtained via the expander-based distance amplification procedure of Alon, Edmonds and Luby [FOCS 1995] can be list-decoded close to the Johnson bound using the SoS hierarchy, by reducing the list decoding problem to unique decoding of the base code. In particular, starting from \emph{any} base code unique-decodable up to distance $\delta$, one can obtain near-MDS codes with rate $R$ and distance $1-R - \epsilon$, list-decodable up to the Johnson bound in time $n^{O_{\epsilon, \delta}(1)}$. - We show that the locally testable codes of Dinur et al. [STOC 2022] with alphabet size $q$, block-length $n$ and distance $\delta$ based on a square Cayley complex with generator sets of size $d$, can be list-decoded up to distance $\mathcal{J}_q(\delta) - \epsilon$ in time $n^{O_{d,q}(1/\epsilon^{4})}$, where $\mathcal{J}_q(\delta)$ denotes the Johnson bound.

Randomized algorithms are important for solving large-scale optimization problems. In this paper, we propose a fast sketching algorithm for least square problems regularized by convex or nonconvex regularization functions, Sketching for Regularized Optimization (SRO). Our SRO algorithm first generates a sketch of the original data matrix, then solves the sketched problem. Different from existing randomized algorithms, our algorithm handles general Frechet subdifferentiable regularization functions in an unified framework. We present general theoretical result for the approximation error between the optimization results of the original problem and the sketched problem for regularized least square problems which can be convex or nonconvex. For arbitrary convex regularizer, relative-error bound is proved for the approximation error. Importantly, minimax rates for sparse signal estimation by solving the sketched sparse convex or nonconvex learning problems are also obtained using our general theoretical result under mild conditions. To the best of our knowledge, our results are among the first to demonstrate minimax rates for convex or nonconvex sparse learning problem by sketching under a unified theoretical framework. We further propose an iterative sketching algorithm which reduces the approximation error exponentially by iteratively invoking the sketching algorithm. Experimental results demonstrate the effectiveness of the proposed SRO and Iterative SRO algorithms.

This paper introduces a groundbreaking classification model called the Controllable Ensemble Transformer and CNN (CETC) for the analysis of medical images. The CETC model combines the powerful capabilities of convolutional neural networks (CNNs) and transformers to effectively capture both local and global features present in medical images. The model architecture comprises three main components: a convolutional encoder block (CEB), a transposed-convolutional decoder block (TDB), and a transformer classification block (TCB). The CEB is responsible for capturing multi-local features at different scales and draws upon components from VGGNet, ResNet, and MobileNet as backbones. By leveraging this combination, the CEB is able to effectively detect and encode local features. The TDB, on the other hand, consists of sub-decoders that decode and sum the captured features using ensemble coefficients. This enables the model to efficiently integrate the information from multiple scales. Finally, the TCB utilizes the SwT backbone and a specially designed prediction head to capture global features, ensuring a comprehensive understanding of the entire image. The paper provides detailed information on the experimental setup and implementation, including the use of transfer learning, data preprocessing techniques, and training settings. The CETC model is trained and evaluated using two publicly available COVID-19 datasets. Remarkably, the model outperforms existing state-of-the-art models across various evaluation metrics. The experimental results clearly demonstrate the superiority of the CETC model, emphasizing its potential for accurately and efficiently analyzing medical images.

This paper studies inference in randomized controlled trials with multiple treatments, where treatment status is determined according to a "matched tuples" design. Here, by a matched tuples design, we mean an experimental design where units are sampled i.i.d. from the population of interest, grouped into "homogeneous" blocks with cardinality equal to the number of treatments, and finally, within each block, each treatment is assigned exactly once uniformly at random. We first study estimation and inference for matched tuples designs in the general setting where the parameter of interest is a vector of linear contrasts over the collection of average potential outcomes for each treatment. Parameters of this form include standard average treatment effects used to compare one treatment relative to another, but also include parameters which may be of interest in the analysis of factorial designs. We first establish conditions under which a sample analogue estimator is asymptotically normal and construct a consistent estimator of its corresponding asymptotic variance. Combining these results establishes the asymptotic exactness of tests based on these estimators. In contrast, we show that, for two common testing procedures based on t-tests constructed from linear regressions, one test is generally conservative while the other generally invalid. We go on to apply our results to study the asymptotic properties of what we call "fully-blocked" 2^K factorial designs, which are simply matched tuples designs applied to a full factorial experiment. Leveraging our previous results, we establish that our estimator achieves a lower asymptotic variance under the fully-blocked design than that under any stratified factorial design which stratifies the experimental sample into a finite number of "large" strata. A simulation study and empirical application illustrate the practical relevance of our results.

This paper updates the survey of AI accelerators and processors from past three years. This paper collects and summarizes the current commercial accelerators that have been publicly announced with peak performance and power consumption numbers. The performance and power values are plotted on a scatter graph, and a number of dimensions and observations from the trends on this plot are again discussed and analyzed. Two new trends plots based on accelerator release dates are included in this year's paper, along with the additional trends of some neuromorphic, photonic, and memristor-based inference accelerators.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司