亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In large-scale studies with parallel signal-plus-noise observations, the local false discovery rate is a summary statistic that is often presumed to be equal to the posterior probability that the signal is null. We prefer to call the latter quantity the local null-signal rate to emphasize our view that a null signal and a false discovery are not identical events. The local null-signal rate is commonly estimated through empirical Bayes procedures that build on the `zero density assumption', which attributes the density of observations near zero entirely to null signals. In this paper, we argue that this strategy does not furnish estimates of the local null-signal rate, but instead of a quantity we call the complementary local activity rate (clar). Although it is likely to be small, an inactive signal is not necessarily zero. The local activity rate addresses two shortcomings of the local null-signal rate. First, it is a weakly continuous functional of the signal distribution, and second, it takes on sensible values when the signal is sparse but not exactly zero. Our findings clarify the interpretation of local false-discovery rates estimated under the zero density assumption.

相關內容

Pearson's Chi-squared test, though widely used for detecting association between categorical variables, exhibits low statistical power in large sparse contingency tables. To address this limitation, two novel permutation tests have been recently developed: the distance covariance permutation test and the U-statistic permutation test. Both leverage the distance covariance functional but employ different estimators. In this work, we explore key statistical properties of the distance covariance for categorical variables. Firstly, we show that unlike Chi-squared, the distance covariance functional is B-robust for any number of categories (fixed or diverging). Second, we establish the strong consistency of distance covariance screening under mild conditions, and simulations confirm its advantage over Chi-squared screening, especially for large sparse tables. Finally, we derive an approximate null distribution for a bias-corrected distance correlation estimate, demonstrating its effectiveness through simulations.

Statistical analysis of bipartite networks frequently requires randomly sampling from the set of all bipartite networks with the same degree sequence as an observed network. Trade algorithms offer an efficient way to generate samples of bipartite networks by incrementally `trading' the positions of some of their edges. However, it is difficult to know how many such trades are required to ensure that the sample is random. I propose a stopping rule that focuses on the distance between sampled networks and the observed network, and stops performing trades when this distribution stabilizes. Analyses demonstrate that, for over 300 different degree sequences, using this stopping rule ensures a random sample with a high probability, and that it is practical for use in empirical applications.

Asymptotic methods for hypothesis testing in high-dimensional data usually require the dimension of the observations to increase to infinity, often with an additional condition on its rate of increase compared to the sample size. On the other hand, multivariate asymptotic methods are valid for fixed dimension only, and their practical implementations in hypothesis testing methodology typically require the sample size to be large compared to the dimension for yielding desirable results. However, in practical scenarios, it is usually not possible to determine whether the dimension of the data at hand conform to the conditions required for the validity of the high-dimensional asymptotic methods, or whether the sample size is large enough compared to the dimension of the data. In this work, a theory of asymptotic convergence is proposed, which holds uniformly over the dimension of the random vectors. This theory attempts to unify the asymptotic results for fixed-dimensional multivariate data and high-dimensional data, and accounts for the effect of the dimension of the data on the performance of the hypothesis testing procedures. The methodology developed based on this asymptotic theory can be applied to data of any dimension. An application of this theory is demonstrated in the two-sample test for the equality of locations. The test statistic proposed is unscaled by the sample covariance, similar to usual tests for high-dimensional data. Using simulated examples, it is demonstrated that the proposed test exhibits better performance compared to several popular tests in the literature for high-dimensional data. Further, it is demonstrated in simulated models that the proposed unscaled test performs better than the usual scaled two-sample tests for multivariate data, including the Hotelling's $T^2$ test for multivariate Gaussian data.

The timely detection of disease outbreaks through reliable early warning signals (EWSs) is indispensable for effective public health mitigation strategies. Nevertheless, the intricate dynamics of real-world disease spread, often influenced by diverse sources of noise and limited data in the early stages of outbreaks, pose a significant challenge in developing reliable EWSs, as the performance of existing indicators varies with extrinsic and intrinsic noises. Here, we address the challenge of modeling disease when the measurements are corrupted by additive white noise, multiplicative environmental noise, and demographic noise into a standard epidemic mathematical model. To navigate the complexities introduced by these noise sources, we employ a deep learning algorithm that provides EWS in infectious disease outbreak by training on noise-induced disease-spreading models. The indicator's effectiveness is demonstrated through its application to real-world COVID-19 cases in Edmonton and simulated time series derived from diverse disease spread models affected by noise. Notably, the indicator captures an impending transition in a time series of disease outbreaks and outperforms existing indicators. This study contributes to advancing early warning capabilities by addressing the intricate dynamics inherent in real-world disease spread, presenting a promising avenue for enhancing public health preparedness and response efforts.

Most link prediction methods return estimates of the connection probability of missing edges in a graph. Such output can be used to rank the missing edges from most to least likely to be a true edge, but does not directly provide a classification into true and non-existent. In this work, we consider the problem of identifying a set of true edges with a control of the false discovery rate (FDR). We propose a novel method based on high-level ideas from the literature on conformal inference. The graph structure induces intricate dependence in the data, which we carefully take into account, as this makes the setup different from the usual setup in conformal inference, where data exchangeability is assumed. The FDR control is empirically demonstrated for both simulated and real data.

When estimating area means, direct estimators based on area-specific data, are usually consistent under the sampling design without model assumptions. However, they are inefficient if the area sample size is small. In small area estimation, model assumptions linking the areas are used to "borrow strength" from other areas. The basic area-level model provides design-consistent estimators but error variances are assumed to be known. In practice, they are estimated with the (scarce) area-specific data. These estimators are inefficient, and their error is not accounted for in the associated mean squared error estimators. Unit-level models do not require to know the error variances but do not account for the survey design. Here we describe a unified estimator of an area mean that may be obtained both from an area-level model or a unit-level model and based on consistent estimators of the model error variances as the number of areas increases. We propose bootstrap mean squared error estimators that account for the uncertainty due to the estimation of the error variances. We show a better performance of the new small area estimators and our bootstrap estimators of the mean squared error. We apply the results to education data from Colombia.

We study a multi-server queueing system with a periodic arrival rate and customers whose joining decision is based on their patience and a delay proxy. Specifically, each customer has a patience level sampled from a common distribution. Upon arrival, they receive an estimate of their delay before joining service and then join the system only if this delay is not more than their patience, otherwise they balk. The main objective is to estimate the parameters pertaining to the arrival rate and patience distribution. Here the complication factor is that this inference should be performed based on the observed process only, i.e., balking customers remain unobserved. We set up a likelihood function of the state dependent effective arrival process (i.e., corresponding to the customers who join), establish strong consistency of the MLE, and derive the asymptotic distribution of the estimation error. Due to the intrinsic non-stationarity of the Poisson arrival process, the proof techniques used in previous work become inapplicable. The novelty of the proving mechanism in this paper lies in the procedure of constructing i.i.d. objects from dependent samples by decomposing the sample path into i.i.d. regeneration cycles. The feasibility of the MLE-approach is discussed via a sequence of numerical experiments, for multiple choices of functions which provide delay estimates. In particular, it is observed that the arrival rate is best estimated at high service capacities, and the patience distribution is best estimated at lower service capacities.

In many application settings, the data have missing entries which make analysis challenging. An abundant literature addresses missing values in an inferential framework: estimating parameters and their variance from incomplete tables. Here, we consider supervised-learning settings: predicting a target when missing values appear in both training and testing data. We show the consistency of two approaches in prediction. A striking result is that the widely-used method of imputing with a constant, such as the mean prior to learning is consistent when missing values are not informative. This contrasts with inferential settings where mean imputation is pointed at for distorting the distribution of the data. That such a simple approach can be consistent is important in practice. We also show that a predictor suited for complete observations can predict optimally on incomplete data, through multiple imputation. Finally, to compare imputation with learning directly with a model that accounts for missing values, we analyze further decision trees. These can naturally tackle empirical risk minimization with missing values, due to their ability to handle the half-discrete nature of incomplete variables. After comparing theoretically and empirically different missing values strategies in trees, we recommend using the "missing incorporated in attribute" method as it can handle both non-informative and informative missing values.

The intricate connection between daily behaviours and health necessitates robust behaviour monitoring, particularly with the advent of IoT systems. This study introduces an innovative approach, exploiting the synergy of information from various IoT sources, to assess the alignment of behaviour routines with health guidelines. We grouped routines based on guideline compliance and used a clustering method to identify similarities in behaviours and key characteristics within each cluster. Applied to an elderly care case study, our approach unveils patterns leading to physical inactivity by categorising days based on recommended daily steps. Utilising data from wristbands, smartphones, and ambient sensors, the study provides insights not achievable with single-source data. Visualisation in a calendar view aids health experts in understanding patient behaviours, enabling precise interventions. Notably, the approach facilitates early detection of behaviour changes during events like COVID-19 and Ramadan, available in our dataset. This work signifies a promising path for behavioural analysis and discovering variations to empower smart healthcare, offering insights into patient health, personalised interventions, and healthier routines through continuous IoT-driven data analysis.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司