亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Human motion prediction aims to forecast future poses given a sequence of past 3D skeletons. While this problem has recently received increasing attention, it has mostly been tackled for single humans in isolation. In this paper, we explore this problem when dealing with humans performing collaborative tasks, we seek to predict the future motion of two interacted persons given two sequences of their past skeletons. We propose a novel cross interaction attention mechanism that exploits historical information of both persons, and learns to predict cross dependencies between the two pose sequences. Since no dataset to train such interactive situations is available, we collected ExPI (Extreme Pose Interaction), a new lab-based person interaction dataset of professional dancers performing Lindy-hop dancing actions, which contains 115 sequences with 30K frames annotated with 3D body poses and shapes. We thoroughly evaluate our cross interaction network on ExPI and show that both in short- and long-term predictions, it consistently outperforms state-of-the-art methods for single-person motion prediction.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Continuity · Weight · 隨機變量 · ·
2022 年 2 月 1 日

Verification of probabilistic forecasts for extreme events has been a very active field of research, stirred by media and public opinions who naturally focus their attention on extreme events, and easily draw biased onclusions. In this context, classical verification methodologies tailored for extreme events, such as thresholded and weighted scoring rules, have undesirable properties that cannot be mitigated; the well-known Continuous Ranked Probability Score (CRPS) makes no exception. In this paper, we define a formal framework to assess the behavior of forecast evaluation procedures with respect to extreme events, that we use to point out that assessment based on the expectation of a proper score is not suitable for extremes. As an alternative, we propose to study the properties of the CRPS as a random variable using extreme value theory to address extreme events verification. To compare calibrated forecasts, an index is introduced that summarizes the ability of probabilistic forecasts to predict extremes. Its strengths and limitations are discussed using both theoretical arguments and simulations.

Classical methods for quantile regression fail in cases where the quantile of interest is extreme and only few or no training data points exceed it. Asymptotic results from extreme value theory can be used to extrapolate beyond the range of the data, and several approaches exist that use linear regression, kernel methods or generalized additive models. Most of these methods break down if the predictor space has more than a few dimensions or if the regression function of extreme quantiles is complex. We propose a method for extreme quantile regression that combines the flexibility of random forests with the theory of extrapolation. Our extremal random forest (ERF) estimates the parameters of a generalized Pareto distribution, conditional on the predictor vector, by maximizing a local likelihood with weights extracted from a quantile random forest. Under certain assumptions, we show consistency of the estimated parameters. Furthermore, we penalize the shape parameter in this likelihood to regularize its variability in the predictor space. Simulation studies show that our ERF outperforms both classical quantile regression methods and existing regression approaches from extreme value theory. We apply our methodology to extreme quantile prediction for U.S. wage data.

Click-Through Rate (CTR) prediction, is an essential component of online advertising. The mainstream techniques mostly focus on feature interaction or user interest modeling, which rely on users' directly interacted items. The performance of these methods are usally impeded by inactive behaviours and system's exposure, incurring that the features extracted do not contain enough information to represent all potential interests. For this sake, we propose Neighbor-Interaction based CTR prediction, which put this task into a Heterogeneous Information Network (HIN) setting, then involves local neighborhood of the target user-item pair in the HIN to predict their linkage. In order to enhance the representation of the local neighbourhood, we consider four types of topological interaction among the nodes, and propose a novel Graph-masked Transformer architecture to effectively incorporates both feature and topological information. We conduct comprehensive experiments on two real world datasets and the experimental results show that our proposed method outperforms state-of-the-art CTR models significantly.

A video autoencoder is proposed for learning disentan- gled representations of 3D structure and camera pose from videos in a self-supervised manner. Relying on temporal continuity in videos, our work assumes that the 3D scene structure in nearby video frames remains static. Given a sequence of video frames as input, the video autoencoder extracts a disentangled representation of the scene includ- ing: (i) a temporally-consistent deep voxel feature to represent the 3D structure and (ii) a 3D trajectory of camera pose for each frame. These two representations will then be re-entangled for rendering the input video frames. This video autoencoder can be trained directly using a pixel reconstruction loss, without any ground truth 3D or camera pose annotations. The disentangled representation can be applied to a range of tasks, including novel view synthesis, camera pose estimation, and video generation by motion following. We evaluate our method on several large- scale natural video datasets, and show generalization results on out-of-domain images.

We present MultiBodySync, a novel, end-to-end trainable multi-body motion segmentation and rigid registration framework for multiple input 3D point clouds. The two non-trivial challenges posed by this multi-scan multibody setting that we investigate are: (i) guaranteeing correspondence and segmentation consistency across multiple input point clouds capturing different spatial arrangements of bodies or body parts; and (ii) obtaining robust motion-based rigid body segmentation applicable to novel object categories. We propose an approach to address these issues that incorporates spectral synchronization into an iterative deep declarative network, so as to simultaneously recover consistent correspondences as well as motion segmentation. At the same time, by explicitly disentangling the correspondence and motion segmentation estimation modules, we achieve strong generalizability across different object categories. Our extensive evaluations demonstrate that our method is effective on various datasets ranging from rigid parts in articulated objects to individually moving objects in a 3D scene, be it single-view or full point clouds.

Video instance segmentation is a complex task in which we need to detect, segment, and track each object for any given video. Previous approaches only utilize single-frame features for the detection, segmentation, and tracking of objects and they suffer in the video scenario due to several distinct challenges such as motion blur and drastic appearance change. To eliminate ambiguities introduced by only using single-frame features, we propose a novel comprehensive feature aggregation approach (CompFeat) to refine features at both frame-level and object-level with temporal and spatial context information. The aggregation process is carefully designed with a new attention mechanism which significantly increases the discriminative power of the learned features. We further improve the tracking capability of our model through a siamese design by incorporating both feature similarities and spatial similarities. Experiments conducted on the YouTube-VIS dataset validate the effectiveness of proposed CompFeat. Our code will be available at //github.com/SHI-Labs/CompFeat-for-Video-Instance-Segmentation.

Potential Drug-Drug Interaction(DDI) occurring while treating complex or co-existing diseases with drug combinations may cause changes in drugs' pharmacological activity. Therefore, DDI prediction has been an important task in the medical healthy machine learning community. Graph-based learning methods have recently aroused widespread interest and are proved to be a priority for this task. However, these methods are often limited to exploiting the inter-view drug molecular structure and ignoring the drug's intra-view interaction relationship, vital to capturing the complex DDI patterns. This study presents a new method, multi-view graph contrastive representation learning for drug-drug interaction prediction, MIRACLE for brevity, to capture inter-view molecule structure and intra-view interactions between molecules simultaneously. MIRACLE treats a DDI network as a multi-view graph where each node in the interaction graph itself is a drug molecular graph instance. We use GCN to encode DDI relationships and a bond-aware attentive message propagating method to capture drug molecular structure information in the MIRACLE learning stage. Also, we propose a novel unsupervised contrastive learning component to balance and integrate the multi-view information. Comprehensive experiments on multiple real datasets show that MIRACLE outperforms the state-of-the-art DDI prediction models consistently.

Planar object tracking is an actively studied problem in vision-based robotic applications. While several benchmarks have been constructed for evaluating state-of-the-art algorithms, there is a lack of video sequences captured in the wild rather than in constrained laboratory environment. In this paper, we present a carefully designed planar object tracking benchmark containing 210 videos of 30 planar objects sampled in the natural environment. In particular, for each object, we shoot seven videos involving various challenging factors, namely scale change, rotation, perspective distortion, motion blur, occlusion, out-of-view, and unconstrained. The ground truth is carefully annotated semi-manually to ensure the quality. Moreover, eleven state-of-the-art algorithms are evaluated on the benchmark using two evaluation metrics, with detailed analysis provided for the evaluation results. We expect the proposed benchmark to benefit future studies on planar object tracking.

Despite the noticeable progress in perceptual tasks like detection, instance segmentation and human parsing, computers still perform unsatisfactorily on visually understanding humans in crowded scenes, such as group behavior analysis, person re-identification and autonomous driving, etc. To this end, models need to comprehensively perceive the semantic information and the differences between instances in a multi-human image, which is recently defined as the multi-human parsing task. In this paper, we present a new large-scale database "Multi-Human Parsing (MHP)" for algorithm development and evaluation, and advances the state-of-the-art in understanding humans in crowded scenes. MHP contains 25,403 elaborately annotated images with 58 fine-grained semantic category labels, involving 2-26 persons per image and captured in real-world scenes from various viewpoints, poses, occlusion, interactions and background. We further propose a novel deep Nested Adversarial Network (NAN) model for multi-human parsing. NAN consists of three Generative Adversarial Network (GAN)-like sub-nets, respectively performing semantic saliency prediction, instance-agnostic parsing and instance-aware clustering. These sub-nets form a nested structure and are carefully designed to learn jointly in an end-to-end way. NAN consistently outperforms existing state-of-the-art solutions on our MHP and several other datasets, and serves as a strong baseline to drive the future research for multi-human parsing.

Partial person re-identification (re-id) is a challenging problem, where only some partial observations (images) of persons are available for matching. However, few studies have offered a flexible solution of how to identify an arbitrary patch of a person image. In this paper, we propose a fast and accurate matching method to address this problem. The proposed method leverages Fully Convolutional Network (FCN) to generate certain-sized spatial feature maps such that pixel-level features are consistent. To match a pair of person images of different sizes, hence, a novel method called Deep Spatial feature Reconstruction (DSR) is further developed to avoid explicit alignment. Specifically, DSR exploits the reconstructing error from popular dictionary learning models to calculate the similarity between different spatial feature maps. In that way, we expect that the proposed FCN can decrease the similarity of coupled images from different persons and increase that of coupled images from the same person. Experimental results on two partial person datasets demonstrate the efficiency and effectiveness of the proposed method in comparison with several state-of-the-art partial person re-id approaches. Additionally, it achieves competitive results on a benchmark person dataset Market1501 with the Rank-1 accuracy being 83.58%.

北京阿比特科技有限公司