亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper analyses the nonconforming Morley type virtual element method to approximate a regular solution to the von K\'{a}rm\'{a}n equations that describes bending of very thin elastic plates. Local existence and uniqueness of a discrete solution to the non-linear problem is discussed. A priori error estimate in the energy norm is established under minimal regularity assumptions on the exact solution. Error estimates in piecewise $H^1$ and $L^2$ norm are also derived. A working procedure to find an approximation for the discrete solution using Newtons method is discussed. Numerical results that justify theoretical estimates are presented.

相關內容

We propose a new algorithm for efficiently solving the damped Fisher matrix in large-scale scenarios where the number of parameters significantly exceeds the number of available samples. This problem is fundamental for natural gradient descent and stochastic reconfiguration. Our algorithm is based on Cholesky decomposition and is generally applicable. Benchmark results show that the algorithm is significantly faster than existing methods.

A continuous constraint satisfaction problem (CCSP) is a constraint satisfaction problem (CSP) with an interval domain $U \subset \mathbb{R}$. We engage in a systematic study to classify CCSPs that are complete of the Existential Theory of the Reals, i.e., ER-complete. To define this class, we first consider the problem ETR, which also stands for Existential Theory of the Reals. In an instance of this problem we are given some sentence of the form $\exists x_1, \ldots, x_n \in \mathbb{R} : \Phi(x_1, \ldots, x_n)$, where $\Phi$ is a well-formed quantifier-free formula consisting of the symbols $\{0, 1, +, \cdot, \geq, >, \wedge, \vee, \neg\}$, the goal is to check whether this sentence is true. Now the class ER is the family of all problems that admit a polynomial-time many-one reduction to ETR. It is known that NP $\subseteq$ ER $\subseteq$ PSPACE. We restrict our attention on CCSPs with addition constraints ($x + y = z$) and some other mild technical condition. Previously, it was shown that multiplication constraints ($x \cdot y = z$), squaring constraints ($x^2 = y$), or inversion constraints ($x\cdot y = 1$) are sufficient to establish ER-completeness. We extend this in the strongest possible sense for equality constraints as follows. We show that CCSPs (with addition constraints and some other mild technical condition) that have any one well-behaved curved equality constraint ($f(x,y) = 0$) are ER-complete. We further extend our results to inequality constraints. We show that any well-behaved convexly curved and any well-behaved concavely curved inequality constraint ($f(x,y) \geq 0$ and $g(x,y) \geq 0$) imply ER-completeness on the class of such CCSPs.

In this paper, we consider the counting function $E_P(y) = |P_{y} \cap Z^{n_x}|$ for a parametric polyhedron $P_{y} = \{x \in R^{n_x} \colon A x \leq b + B y\}$, where $y \in R^{n_y}$. We give a new representation of $E_P(y)$, called a \emph{piece-wise step-polynomial with periodic coefficients}, which is a generalization of piece-wise step-polynomials and integer/rational Ehrhart's quasi-polynomials. It gives the fastest way to calculate $E_P(y)$ in certain scenarios. The most important cases are the following: 1) We show that, for the parametric polyhedron $P_y$ defined by a standard-form system $A x = y,\, x \geq 0$ with a fixed number of equalities, the function $E_P(y)$ can be represented by a polynomial-time computable function. In turn, such a representation of $E_P(y)$ can be constructed by an $poly\bigl(n, \|A\|_{\infty}\bigr)$-time algorithm; 2) Assuming again that the number of equalities is fixed, we show that integer/rational Ehrhart's quasi-polynomials of a polytope can be computed by FPT-algorithms, parameterized by sub-determinants of $A$ or its elements; 3) Our representation of $E_P$ is more efficient than other known approaches, if $A$ has bounded elements, especially if it is sparse in addition. Additionally, we provide a discussion about possible applications in the area of compiler optimization. In some "natural" assumptions on a program code, our approach has the fastest complexity bounds.

Given some binary matrix $M$, suppose we are presented with the collection of its rows and columns in independent arbitrary orderings. From this information, are we able to recover the unique original orderings and matrix? We present an algorithm that identifies whether there is a unique ordering associated with a set of rows and columns, and outputs either the unique correct orderings for the rows and columns or the full collection of all valid orderings and valid matrices. We show that there is a constant $c > 0$ such that the algorithm terminates in $O(n^2)$ time with high probability and in expectation for random $n \times n$ binary matrices with i.i.d.\ Bernoulli $(p)$ entries $(m_{ij})_{ij=1}^n$ such that $\frac{c\log^2(n)}{n(\log\log(n))^2} \leq p \leq \frac{1}{2}$.

We study the problem of testing whether a symmetric $d \times d$ input matrix $A$ is symmetric positive semidefinite (PSD), or is $\epsilon$-far from the PSD cone, meaning that $\lambda_{\min}(A) \leq - \epsilon \|A\|_p$, where $\|A\|_p$ is the Schatten-$p$ norm of $A$. In applications one often needs to quickly tell if an input matrix is PSD, and a small distance from the PSD cone may be tolerable. We consider two well-studied query models for measuring efficiency, namely, the matrix-vector and vector-matrix-vector query models. We first consider one-sided testers, which are testers that correctly classify any PSD input, but may fail on a non-PSD input with a tiny failure probability. Up to logarithmic factors, in the matrix-vector query model we show a tight $\widetilde{\Theta}(1/\epsilon^{p/(2p+1)})$ bound, while in the vector-matrix-vector query model we show a tight $\widetilde{\Theta}(d^{1-1/p}/\epsilon)$ bound, for every $p \geq 1$. We also show a strong separation between one-sided and two-sided testers in the vector-matrix-vector model, where a two-sided tester can fail on both PSD and non-PSD inputs with a tiny failure probability. In particular, for the important case of the Frobenius norm, we show that any one-sided tester requires $\widetilde{\Omega}(\sqrt{d}/\epsilon)$ queries. However we introduce a bilinear sketch for two-sided testing from which we construct a Frobenius norm tester achieving the optimal $\widetilde{O}(1/\epsilon^2)$ queries. We also give a number of additional separations between adaptive and non-adaptive testers. Our techniques have implications beyond testing, providing new methods to approximate the spectrum of a matrix with Frobenius norm error using dimensionality reduction in a way that preserves the signs of eigenvalues.

For some $\epsilon > 10^{-36}$ we give a randomized $3/2-\epsilon$ approximation algorithm for metric TSP.

In numerical linear algebra, considerable effort has been devoted to obtaining faster algorithms for linear systems whose underlying matrices exhibit structural properties. A prominent success story is the method of generalized nested dissection~[Lipton-Rose-Tarjan'79] for separable matrices. On the other hand, the majority of recent developments in the design of efficient linear program (LP) solves do not leverage the ideas underlying these faster linear system solvers nor consider the separable structure of the constraint matrix. We give a faster algorithm for separable linear programs. Specifically, we consider LPs of the form $\min_{\mathbf{A}\mathbf{x}=\mathbf{b}, \mathbf{l}\leq\mathbf{x}\leq\mathbf{u}} \mathbf{c}^\top\mathbf{x}$, where the graphical support of the constraint matrix $\mathbf{A} \in \mathbb{R}^{n\times m}$ is $O(n^\alpha)$-separable. These include flow problems on planar graphs and low treewidth matrices among others. We present an $\tilde{O}((m+m^{1/2 + 2\alpha}) \log(1/\epsilon))$ time algorithm for these LPs, where $\epsilon$ is the relative accuracy of the solution. Our new solver has two important implications: for the $k$-multicommodity flow problem on planar graphs, we obtain an algorithm running in $\tilde{O}(k^{5/2} m^{3/2})$ time in the high accuracy regime; and when the support of $\mathbf{A}$ is $O(n^\alpha)$-separable with $\alpha \leq 1/4$, our algorithm runs in $\tilde{O}(m)$ time, which is nearly optimal. The latter significantly improves upon the natural approach of combining interior point methods and nested dissection, whose time complexity is lower bounded by $\Omega(\sqrt{m}(m+m^{\alpha\omega}))=\Omega(m^{3/2})$, where $\omega$ is the matrix multiplication constant. Lastly, in the setting of low-treewidth LPs, we recover the results of [DLY,STOC21] and [GS,22] with significantly simpler data structure machinery.

We study the recursion-theoretic complexity of Positive Almost-Sure Termination ($\mathsf{PAST}$) in an imperative programming language with rational variables, bounded nondeterministic choice, and discrete probabilistic choice. A program terminates positive almost-surely if, for every scheduler, the program terminates almost-surely and the expected runtime to termination is finite. We show that $\mathsf{PAST}$ for our language is complete for the (lightface) co-analytic sets ($\Pi^1_1$-complete) - this is in contrast to the related notions of Almost-Sure Termination ($\mathsf{AST}$) and Bounded Termination ($\mathsf{BAST}$), both of which are arithmetical ($\Pi^0_2$ and $\Sigma^0_2$ complete respectively). Our upper bound implies an effective procedure to reduce reasoning about probabilistic termination to non-probabilistic fair termination in a model with bounded nondeterminism, and to simple program termination in models with unbounded nondeterminism. Our lower bound shows the opposite: for every program with unbounded nondeterministic choice, there is an effectively computable probabilistic program with bounded choice such that the original program is terminating $iff$ the transformed program is $\mathsf{PAST}$. We show that every program has an effectively computable normal form, in which each probabilistic choice either continues or terminates execution. For normal form programs, we provide the first sound and complete proof rule for $\mathsf{PAST}$. Our proof rule uses transfinite ordinals. We show that reasoning about $\mathsf{PAST}$ requires transfinite ordinals up to $\omega^{CK}_1$; thus, existing techniques for probabilistic termination based on ranking supermartingales that map program states to reals do not suffice to reason about $\mathsf{PAST}$.

We study the existence of finite characterisations for modal formulas. A finite characterisation of a modal formula $\varphi$ is a finite collection of positive and negative examples that distinguishes $\varphi$ from every other, non-equivalent modal formula, where an example is a finite pointed Kripke structure. This definition can be restricted to specific frame classes and to fragments of the modal language: a modal fragment $L$ admits finite characterisations with respect to a frame class $F$ if every formula $\varphi\in L$ has a finite characterisation with respect to $L$ consting of examples that are based on frames in $F$. Finite characterisations are useful for illustration, interactive specification, and debugging of formal specifications, and their existence is a precondition for exact learnability with membership queries. We show that the full modal language admits finite characterisations with respect to a frame class $F$ only when the modal logic of $F$ is locally tabular. We then study which modal fragments, freely generated by some set of connectives, admit finite characterisations. Our main result is that the positive modal language without the truth-constants $\top$ and $\bot$ admits finite characterisations w.r.t. the class of all frames. This result is essentially optimal: finite characterizability fails when the language is extended with the truth constant $\top$ or $\bot$ or with all but very limited forms of negation.

We propose a general method for optimally approximating an arbitrary matrix $\mathbf{M}$ by a structured matrix $\mathbf{T}$ (circulant, Toeplitz/Hankel, etc.) and examine its use for estimating the spectra of genomic linkage disequilibrium matrices. This application is prototypical of a variety of genomic and proteomic problems that demand robustness to incomplete biosequence information. We perform a simulation study and corroborative test of our method using real genomic data from the Mouse Genome Database. The results confirm the predicted utility of the method and provide strong evidence of its potential value to a wide range of bioinformatics applications. Our optimal general matrix approximation method is expected to be of independent interest to an even broader range of applications in applied mathematics and engineering.

北京阿比特科技有限公司