Approximate Message Passing (AMP) algorithms provide a valuable tool for studying mean-field approximations and dynamics in a variety of applications. Although these algorithms are often first derived for matrices having independent Gaussian entries or satisfying rotational invariance in law, their state evolution characterizations are expected to hold over larger universality classes of random matrix ensembles. We develop several new results on AMP universality. For AMP algorithms tailored to independent Gaussian entries, we show that their state evolutions hold over broadly defined generalized Wigner and white noise ensembles, including matrices with heavy-tailed entries and heterogeneous entrywise variances that may arise in data applications. For AMP algorithms tailored to rotational invariance in law, we show that their state evolutions hold over delocalized sign-and-permutation-invariant matrix ensembles that have a limit distribution over the diagonal, including sensing matrices composed of subsampled Hadamard or Fourier transforms and diagonal operators. We establish these results via a simplified moment-method proof, reducing AMP universality to the study of products of random matrices and diagonal tensors along a tensor network. As a by-product of our analyses, we show that the aforementioned matrix ensembles satisfy a notion of asymptotic freeness with respect to such tensor networks, which parallels usual definitions of freeness for traces of matrix products.
Mesh-based simulations play a key role when modeling complex physical systems that, in many disciplines across science and engineering, require the solution of parametrized time-dependent nonlinear partial differential equations (PDEs). In this context, full order models (FOMs), such as those relying on the finite element method, can reach high levels of accuracy, however often yielding intensive simulations to run. For this reason, surrogate models are developed to replace computationally expensive solvers with more efficient ones, which can strike favorable trade-offs between accuracy and efficiency. This work explores the potential usage of graph neural networks (GNNs) for the simulation of time-dependent PDEs in the presence of geometrical variability. In particular, we propose a systematic strategy to build surrogate models based on a data-driven time-stepping scheme where a GNN architecture is used to efficiently evolve the system. With respect to the majority of surrogate models, the proposed approach stands out for its ability of tackling problems with parameter dependent spatial domains, while simultaneously generalizing to different geometries and mesh resolutions. We assess the effectiveness of the proposed approach through a series of numerical experiments, involving both two- and three-dimensional problems, showing that GNNs can provide a valid alternative to traditional surrogate models in terms of computational efficiency and generalization to new scenarios. We also assess, from a numerical standpoint, the importance of using GNNs, rather than classical dense deep neural networks, for the proposed framework.
The paper addresses an error analysis of an Eulerian finite element method used for solving a linearized Navier--Stokes problem in a time-dependent domain. In this study, the domain's evolution is assumed to be known and independent of the solution to the problem at hand. The numerical method employed in the study combines a standard Backward Differentiation Formula (BDF)-type time-stepping procedure with a geometrically unfitted finite element discretization technique. Additionally, Nitsche's method is utilized to enforce the boundary conditions. The paper presents a convergence estimate for several velocity--pressure elements that are inf-sup stable. The estimate demonstrates optimal order convergence in the energy norm for the velocity component and a scaled $L^2(H^1)$-type norm for the pressure component.
Self-supervised Learning (SSL) is a machine learning algorithm for pretraining Deep Neural Networks (DNNs) without requiring manually labeled data. The central idea of this learning technique is based on an auxiliary stage aka pretext task in which labeled data are created automatically through data augmentation and exploited for pretraining the DNN. However, the effect of each pretext task is not well studied or compared in the literature. In this paper, we study the contribution of augmentation operators on the performance of self supervised learning algorithms in a constrained settings. We propose an evolutionary search method for optimization of data augmentation pipeline in pretext tasks and measure the impact of augmentation operators in several SOTA SSL algorithms. By encoding different combination of augmentation operators in chromosomes we seek the optimal augmentation policies through an evolutionary optimization mechanism. We further introduce methods for analyzing and explaining the performance of optimized SSL algorithms. Our results indicate that our proposed method can find solutions that outperform the accuracy of classification of SSL algorithms which confirms the influence of augmentation policy choice on the overall performance of SSL algorithms. We also compare optimal SSL solutions found by our evolutionary search mechanism and show the effect of batch size in the pretext task on two visual datasets.
Multiscale Finite Element Methods (MsFEMs) are now well-established finite element type approaches dedicated to multiscale problems. They first compute local, oscillatory, problem-dependent basis functions that generate a suitable discretization space, and next perform a Galerkin approximation of the problem on that space. We investigate here how these approaches can be implemented in a non-intrusive way, in order to facilitate their dissemination within industrial codes or non-academic environments. We develop an abstract framework that covers a wide variety of MsFEMs for linear second-order partial differential equations. Non-intrusive MsFEM approaches are developed within the full generality of this framework, which may moreover be beneficial to steering software development and improving the theoretical understanding and analysis of MsFEMs.
We present Surjective Sequential Neural Likelihood (SSNL) estimation, a novel method for simulation-based inference in models where the evaluation of the likelihood function is not tractable and only a simulator that can generate synthetic data is available. SSNL fits a dimensionality-reducing surjective normalizing flow model and uses it as a surrogate likelihood function which allows for conventional Bayesian inference using either Markov chain Monte Carlo methods or variational inference. By embedding the data in a low-dimensional space, SSNL solves several issues previous likelihood-based methods had when applied to high-dimensional data sets that, for instance, contain non-informative data dimensions or lie along a lower-dimensional manifold. We evaluate SSNL on a wide variety of experiments and show that it generally outperforms contemporary methods used in simulation-based inference, for instance, on a challenging real-world example from astrophysics which models the magnetic field strength of the sun using a solar dynamo model.
We propose a novel stochastic algorithm that randomly samples entire rows and columns of the matrix as a way to approximate an arbitrary matrix function. This contrasts with the "classical" Monte Carlo method which only works with one entry at a time, resulting in a significant better convergence rate than the "classical" approach. To assess the applicability of our method, we compute the subgraph centrality and total communicability of several large networks. In all benchmarks analyzed so far, the performance of our method was significantly superior to the competition, being able to scale up to 64 CPU cores with a remarkable efficiency.
Bibliometric studies based on the Web of Science (WOS) database have become an increasingly popular method for analysing the structure of scientific research. So do network approaches, which, based on empirical data, make it possible to characterize the emergence of topological structures over time and across multiple research areas. Our paper is a contribution to interweaving these two lines of research that have progressed in separate ways but whose common applications have been increasingly more frequent. Among other attributes, Author Keywords and Keywords Plus are used as units of analysis that enable us to identify changes in the topics of interest and related bibliography. By considering the co-occurrence of those keywords with the Author Keyword \texttt{Complexity}, we provide an overview of the evolution of studies on Complexity Sciences, and compare this evolution in seven scientific fields. The results show a considerable increase in the number of papers dealing with complexity, as well as a general tendency across different disciplines for this literature to move from a more foundational, general and conceptual to a more applied and specific set of co-occurring keywords. Moreover, we provide evidence of changing topologies of networks of co-occurring keywords, which are described through the computation of some topological coefficients. In so doing, we emphasize the distinguishing structures that characterize the networks of the seven research areas.
Physics-informed neural networks (PINNs) have emerged as a powerful tool for solving inverse problems, especially in cases where no complete information about the system is known and scatter measurements are available. This is especially useful in hemodynamics since the boundary information is often difficult to model, and high-quality blood flow measurements are generally hard to obtain. In this work, we use the PINNs methodology for estimating reduced-order model parameters and the full velocity field from scatter 2D noisy measurements in the ascending aorta. The results show stable and accurate parameter estimations when using the method with simulated data, while the velocity reconstruction shows dependence on the measurement quality and the flow pattern complexity. The method allows for solving clinical-relevant inverse problems in hemodynamics and complex coupled physical systems.
We present SEIF, a methodology that combines static analysis with symbolic execution to verify and explicate information flow paths in a hardware design. SEIF begins with a statically built model of the information flow through a design and uses guided symbolic execution to recognize and eliminate non-flows with high precision or to find corresponding paths through the design state for true flows. We evaluate SEIF on two open-source CPUs, an AES core, and the AKER access control module. SEIF can exhaustively explore 10-12 clock cycles deep in 4-6 seconds on average, and can automatically account for 86-90% of the paths in the statically built model. Additionally, SEIF can be used to find multiple violating paths for security properties, providing a new angle for security verification.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.