A private information retrieval (PIR) scheme allows a client to retrieve a data item $x_i$ among $n$ items $x_1,x_2,\ldots,x_n$ from $k$ servers, without revealing what $i$ is even when $t < k$ servers collude and try to learn $i$. Such a PIR scheme is said to be $t$-private. A PIR scheme is $v$-verifiable if the client can verify the correctness of the retrieved $x_i$ even when $v \leq k$ servers collude and try to fool the client by sending manipulated data. Most of the previous works in the literature on PIR assumed that $v < k$, leaving the case of all-colluding servers open. We propose a generic construction that combines a linear map commitment (LMC) and an arbitrary linear PIR scheme to produce a $k$-verifiable PIR scheme, termed a committed PIR scheme. Such a scheme guarantees that even in the worst scenario, when all servers are under the control of an attacker, although the privacy is unavoidably lost, the client won't be fooled into accepting an incorrect $x_i$. We demonstrate the practicality of our proposal by implementing the committed PIR schemes based on the Lai-Malavolta LMC and three well-known PIR schemes using the GMP library and blst, the current fastest C library for elliptic curve pairings.
Sampling from multimodal distributions is a challenging task in scientific computing. When a distribution has an exact symmetry between the modes, direct jumps among them can accelerate the samplings significantly. However, the distributions from most applications do not have exact symmetries. This paper considers the distributions with approximate symmetries. We first construct an exactly symmetric reference distribution from the target one by averaging over the group orbit associated with the approximate symmetry. Next, we can apply the multilevel Monte Carlo methods by constructing a continuation path between the reference and target distributions. We discuss how to implement these steps with annealed importance sampling and tempered transitions. Compared with traditional multilevel methods, the proposed approach can be more effective since the reference and target distributions are much closer. Numerical results of the Ising models are presented to illustrate the efficiency of the proposed method.
We introduce Clifford Group Equivariant Neural Networks: a novel approach for constructing $\mathrm{O}(n)$- and $\mathrm{E}(n)$-equivariant models. We identify and study the $\textit{Clifford group}$, a subgroup inside the Clifford algebra whose definition we adjust to achieve several favorable properties. Primarily, the group's action forms an orthogonal automorphism that extends beyond the typical vector space to the entire Clifford algebra while respecting the multivector grading. This leads to several non-equivalent subrepresentations corresponding to the multivector decomposition. Furthermore, we prove that the action respects not just the vector space structure of the Clifford algebra but also its multiplicative structure, i.e., the geometric product. These findings imply that every polynomial in multivectors, An advantage worth mentioning is that we obtain expressive layers that can elegantly generalize to inner-product spaces of any dimension. We demonstrate, notably from a single core implementation, state-of-the-art performance on several distinct tasks, including a three-dimensional $n$-body experiment, a four-dimensional Lorentz-equivariant high-energy physics experiment, and a five-dimensional convex hull experiment.
Sampling from multimodal distributions is a challenging task in scientific computing. When a distribution has an exact symmetry between the modes, direct jumps among them can accelerate the samplings significantly. However, the distributions from most applications do not have exact symmetries. This paper considers the distributions with approximate symmetries. We first construct an exactly symmetric reference distribution from the target one by averaging over the group orbit associated with the approximate symmetry. Next, we can apply the multilevel Monte Carlo methods by constructing a continuation path between the reference and target distributions. We discuss how to implement these steps with annealed importance sampling and tempered transitions. Compared with traditional multilevel methods, the proposed approach can be more effective since the reference and target distributions are much closer. Numerical results of the Ising models are presented to illustrate the efficiency of the proposed method.
We review the cumulant decomposition (a way of decomposing the expectation of a product of random variables (e.g. $\mathbb{E}[XYZ]$) into a sum of terms corresponding to partitions of these variables.) and the Wick decomposition (a way of decomposing a product of (not necessarily random) variables into a sum of terms corresponding to subsets of the variables). Then we generalize each one to a new decomposition where the product function is generalized to an arbitrary function.
Quantum multiplication is a fundamental operation in quantum computing. Most existing quantum multipliers require $O(n)$ qubits to multiply two $n$-bit integer numbers, limiting their applicability to multiply large integer numbers using near-term quantum computers. In this paper, we propose the Quantum Multiplier Based on Exponent Adder (QMbead), a new approach that addresses this limitation by requiring just $\log_2(n)$ qubits to multiply two $n$-bit integer numbers. QMbead uses a so-called exponent encoding to represent two multiplicands as two superposition states, respectively, and then employs a quantum adder to obtain the sum of these two superposition states, and subsequently measures the outputs of the quantum adder to calculate the product of the multiplicands. This paper presents two types of quantum adders based on the quantum Fourier transform (QFT) for use in QMbead. The circuit depth of QMbead is determined by the chosen quantum adder, being $O(\log^2 n)$ when using the two QFT-based adders. If leveraging a logarithmic-depth quantum adder, the time complexity of QMbead is $O(n \log n)$, identical to that of the fastest classical multiplication algorithm, Harvey-Hoeven algorithm. Interestingly, QMbead maintains an advantage over the Harvey-Hoeven algorithm, given that the latter is only suitable for excessively large numbers, whereas QMbead is valid for both small and large numbers. The multiplicand can be either an integer or a decimal number. QMbead has been successfully implemented on quantum simulators to compute products with a bit length of up to 273 bits using only 17 qubits. This establishes QMbead as an efficient solution for multiplying large integer or decimal numbers with many bits.
This paper studies the prediction of a target $\mathbf{z}$ from a pair of random variables $(\mathbf{x},\mathbf{y})$, where the ground-truth predictor is additive $\mathbb{E}[\mathbf{z} \mid \mathbf{x},\mathbf{y}] = f_\star(\mathbf{x}) +g_{\star}(\mathbf{y})$. We study the performance of empirical risk minimization (ERM) over functions $f+g$, $f \in F$ and $g \in G$, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class $F$ is "simpler" than $G$ (measured, e.g., in terms of its metric entropy), our predictor is more resilient to $\textbf{heterogenous covariate shifts}$ in which the shift in $\mathbf{x}$ is much greater than that in $\mathbf{y}$. Our analysis proceeds by demonstrating that ERM behaves $\textbf{qualitatively similarly to orthogonal machine learning}$: the rate at which ERM recovers the $f$-component of the predictor has only a lower-order dependence on the complexity of the class $G$, adjusted for partial non-indentifiability introduced by the additive structure. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains.
A group of $n$ agents with numerical preferences for each other are to be assigned to the $n$ seats of a dining table. We study two natural topologies:~circular (cycle) tables and panel (path) tables. For a given seating arrangement, an agent's utility is the sum of their preference values towards their (at most two) direct neighbors. An arrangement is envy-free if no agent strictly prefers someone else's seat, and it is stable if no two agents strictly prefer each other's seats. Recently, it was shown that for both paths and cycles it is NP-hard to decide whether an envy-free arrangement exists, even for symmetric binary preferences. In contrast, we show that, if agents come from a bounded number of classes, the problem is solvable in polynomial time for arbitrarily-valued possibly asymmetric preferences, including outputting an arrangement if possible. We also give simpler proofs of the previous hardness results if preferences are allowed to be asymmetric. For stability, it is known that deciding the existence of stable arrangements is NP-hard for both topologies, but only if sufficiently-many numerical values are allowed. As it turns out, even constructing unstable instances can be challenging in certain cases, e.g., binary values. We completely characterize the existence of stable arrangements based on the number of distinct values in the preference matrix and the number of agent classes. We also ask the same question for non-negative values and give an almost-complete characterization, the most interesting outstanding case being that of paths with two-valued non-negative preferences, for which we experimentally find that stable arrangements always exist and prove it under the additional constraint that agents can only swap seats when sitting at most two positions away. We moreover give a polynomial algorithm for determining a stable arrangement assuming a bounded number of classes.
We consider an online binary prediction setting where a forecaster observes a sequence of $T$ bits one by one. Before each bit is revealed, the forecaster predicts the probability that the bit is $1$. The forecaster is called well-calibrated if for each $p \in [0, 1]$, among the $n_p$ bits for which the forecaster predicts probability $p$, the actual number of ones, $m_p$, is indeed equal to $p \cdot n_p$. The calibration error, defined as $\sum_p |m_p - p n_p|$, quantifies the extent to which the forecaster deviates from being well-calibrated. It has long been known that an $O(T^{2/3})$ calibration error is achievable even when the bits are chosen adversarially, and possibly based on the previous predictions. However, little is known on the lower bound side, except an $\Omega(\sqrt{T})$ bound that follows from the trivial example of independent fair coin flips. In this paper, we prove an $\Omega(T^{0.528})$ bound on the calibration error, which is the first super-$\sqrt{T}$ lower bound for this setting to the best of our knowledge. The technical contributions of our work include two lower bound techniques, early stopping and sidestepping, which circumvent the obstacles that have previously hindered strong calibration lower bounds. We also propose an abstraction of the prediction setting, termed the Sign-Preservation game, which may be of independent interest. This game has a much smaller state space than the full prediction setting and allows simpler analyses. The $\Omega(T^{0.528})$ lower bound follows from a general reduction theorem that translates lower bounds on the game value of Sign-Preservation into lower bounds on the calibration error.
The chronological order of user-item interactions can reveal time-evolving and sequential user behaviors in many recommender systems. The items that users will interact with may depend on the items accessed in the past. However, the substantial increase of users and items makes sequential recommender systems still face non-trivial challenges: (1) the hardness of modeling the short-term user interests; (2) the difficulty of capturing the long-term user interests; (3) the effective modeling of item co-occurrence patterns. To tackle these challenges, we propose a memory augmented graph neural network (MA-GNN) to capture both the long- and short-term user interests. Specifically, we apply a graph neural network to model the item contextual information within a short-term period and utilize a shared memory network to capture the long-range dependencies between items. In addition to the modeling of user interests, we employ a bilinear function to capture the co-occurrence patterns of related items. We extensively evaluate our model on five real-world datasets, comparing with several state-of-the-art methods and using a variety of performance metrics. The experimental results demonstrate the effectiveness of our model for the task of Top-K sequential recommendation.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.