亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automata operating on infinite objects feature prominently in the theory of the modal $\mu$-calculus. One such application concerns the tableau games introduced by Niwi\'{n}ski & Walukiewicz, of which the winning condition for infinite plays can be naturally checked by a nondeterministic parity stream automaton. Inspired by work of Jungteerapanich and Stirling we show how determinization constructions of this automaton may be used to directly obtain proof systems for the $\mu$-calculus. More concretely, we introduce a binary tree construction for determinizing nondeterministic parity stream automata. Using this construction we define the annotated cyclic proof system $\mathsf{BT}$, where formulas are annotated by tuples of binary strings. Soundness and Completeness of this system follow almost immediately from the correctness of the determinization method.

相關內容

Reinforcement learning (RL) with linear temporal logic (LTL) objectives can allow robots to carry out symbolic event plans in unknown environments. Most existing methods assume that the event detector can accurately map environmental states to symbolic events; however, uncertainty is inevitable for real-world event detectors. Such uncertainty in an event detector generates multiple branching possibilities on LTL instructions, confusing action decisions. Moreover, the queries to the uncertain event detector, necessary for the task's progress, may increase the uncertainty further. To cope with those issues, we propose an RL framework, Learning Action and Query over Belief LTL (LAQBL), to learn an agent that can consider the diversity of LTL instructions due to uncertain event detection while avoiding task failure due to the unnecessary event-detection query. Our framework simultaneously learns 1) an embedding of belief LTL, which is multiple branching possibilities on LTL instructions using a graph neural network, 2) an action policy, and 3) a query policy which decides whether or not to query for the event detector. Simulations in a 2D grid world and image-input robotic inspection environments show that our method successfully learns actions to follow LTL instructions even with uncertain event detectors.

$k$-defective cliques relax cliques by allowing up-to $k$ missing edges from being a complete graph. This relaxation enables us to find larger near-cliques and has applications in link prediction, cluster detection, social network analysis and transportation science. The problem of finding the largest $k$-defective clique has been recently studied with several algorithms being proposed in the literature. However, the currently fastest algorithm KDBB does not improve its time complexity from being the trivial $O(2^n)$, and also, KDBB's practical performance is still not satisfactory. In this paper, we advance the state of the art for exact maximum $k$-defective clique computation, in terms of both time complexity and practical performance. Moreover, we separate the techniques required for achieving the time complexity from others purely used for practical performance consideration; this design choice may facilitate the research community to further improve the practical efficiency while not sacrificing the worst case time complexity. In specific, we first develop a general framework kDC that beats the trivial time complexity of $O(2^n)$ and achieves a better time complexity than all existing algorithms. The time complexity of kDC is solely achieved by non-fully-adjacent-first branching rule, excess-removal reduction rule and high-degree reduction rule. Then, to make kDC practically efficient, we further propose a new upper bound, two reduction rules, and an algorithm for efficiently computing a large initial solution. Extensive empirical studies on three benchmark graph collections with $290$ graphs in total demonstrate that kDC outperforms the currently fastest algorithm KDBB by several orders of magnitude.

A $k$-stack layout (or $k$-page book embedding) of a graph consists of a total order of the vertices, and a partition of the edges into $k$ sets of non-crossing edges with respect to the vertex order. The stack number of a graph is the minimum $k$ such that it admits a $k$-stack layout. In this paper we study a long-standing problem regarding the stack number of planar directed acyclic graphs (DAGs), for which the vertex order has to respect the orientation of the edges. We investigate upper and lower bounds on the stack number of several families of planar graphs: We improve the constant upper bounds on the stack number of single-source and monotone outerplanar DAGs and of outerpath DAGs, and improve the constant upper bound for upward planar 3-trees. Further, we provide computer-aided lower bounds for upward (outer-) planar DAGs.

A pair of linear codes whose intersection is of dimension $\ell$, where $\ell$ is a non-negetive integer, is called an $\ell$-intersection pair of codes. This paper focuses on studying $\ell$-intersection pairs of $\lambda_i$-constacyclic, $i=1,2,$ and conjucyclic codes. We first characterize an $\ell$-intersection pair of $\lambda_i$-constacyclic codes. A formula for $\ell$ has been established in terms of the degrees of the generator polynomials of $\lambda_i$-constacyclic codes. This allows obtaining a condition for $\ell$-linear complementary pairs (LPC) of constacyclic codes. Later, we introduce and characterize the $\ell$-intersection pair of conjucyclic codes over $\mathbb{F}_{q^2}$. The first observation in the process is that there are no non-trivial linear conjucyclic codes over finite fields. So focus on the characterization of additive conjucyclic (ACC) codes. We show that the largest $\mathbb{F}_q$-subcode of an ACC code over $\mathbb{F}_{q^2}$ is cyclic and obtain its generating polynomial. This enables us to find the size of an ACC code. Furthermore, we discuss the trace code of an ACC code and show that it is cyclic. Finally, we determine $\ell$-intersection pairs of trace codes of ACC codes over $\mathbb{F}_4$.

We consider the problem of computing the Maximal Exact Matches (MEMs) of a given pattern $P[1 .. m]$ on a large repetitive text collection $T[1 .. n]$, which is represented as a (hopefully much smaller) run-length context-free grammar of size $g_{rl}$. We show that the problem can be solved in time $O(m^2 \log^\epsilon n)$, for any constant $\epsilon > 0$, on a data structure of size $O(g_{rl})$. Further, on a locally consistent grammar of size $O(\delta\log\frac{n}{\delta})$, the time decreases to $O(m\log m(\log m + \log^\epsilon n))$. The value $\delta$ is a function of the substring complexity of $T$ and $\Omega(\delta\log\frac{n}{\delta})$ is a tight lower bound on the compressibility of repetitive texts $T$, so our structure has optimal size in terms of $n$ and $\delta$. We extend our results to several related problems, such as finding $k$-MEMs, MUMs, rare MEMs, and applications.

Cayley hash functions are cryptographic hashes constructed from Cayley graphs of groups. The hash function proposed by Shpilrain and Sosnovski (2016), based on linear functions over a finite field, was proven insecure. This paper shows that the proposal by Ghaffari and Mostaghim (2018) that uses the Shpilrain and Sosnovski's hash in its construction is also insecure. We demonstrate its security vulnerability by constructing collisions.

Broadcast protocols enable a set of $n$ parties to agree on the input of a designated sender, even facing attacks by malicious parties. In the honest-majority setting, randomization and cryptography were harnessed to achieve low-communication broadcast with sub-quadratic total communication and balanced sub-linear cost per party. However, comparatively little is known in the dishonest-majority setting. Here, the most communication-efficient constructions are based on Dolev and Strong (SICOMP '83), and sub-quadratic broadcast has not been achieved. On the other hand, the only nontrivial $\omega(n)$ communication lower bounds are restricted to deterministic protocols, or against strong adaptive adversaries that can perform "after the fact" removal of messages. We provide new communication lower bounds in this space, which hold against arbitrary cryptography and setup assumptions, as well as a simple protocol showing near tightness of our first bound. 1) We demonstrate a tradeoff between resiliency and communication for protocols secure against $n-o(n)$ static corruptions. For example, $\Omega(n\cdot {\sf polylog}(n))$ messages are needed when the number of honest parties is $n/{\sf polylog}(n)$; $\Omega(n\sqrt{n})$ messages are needed for $O(\sqrt{n})$ honest parties; and $\Omega(n^2)$ messages are needed for $O(1)$ honest parties. Complementarily, we demonstrate broadcast with $O(n\cdot{\sf polylog}(n))$ total communication facing any constant fraction of static corruptions. 2) Our second bound considers $n/2 + k$ corruptions and a weakly adaptive adversary that cannot remove messages "after the fact." We show that any broadcast protocol within this setting can be attacked to force an arbitrary party to send messages to $k$ other parties. This rules out, for example, broadcast facing 51% corruptions in which all non-sender parties have sublinear communication locality.

Recently, transformer-based methods have shown exceptional performance in monocular 3D object detection, which can predict 3D attributes from a single 2D image. These methods typically use visual and depth representations to generate query points on objects, whose quality plays a decisive role in the detection accuracy. However, current unsupervised attention mechanisms without any geometry appearance awareness in transformers are susceptible to producing noisy features for query points, which severely limits the network performance and also makes the model have a poor ability to detect multi-category objects in a single training process. To tackle this problem, this paper proposes a novel "Supervised Shape&Scale-perceptive Deformable Attention" (S$^3$-DA) module for monocular 3D object detection. Concretely, S$^3$-DA utilizes visual and depth features to generate diverse local features with various shapes and scales and predict the corresponding matching distribution simultaneously to impose valuable shape&scale perception for each query. Benefiting from this, S$^3$-DA effectively estimates receptive fields for query points belonging to any category, enabling them to generate robust query features. Besides, we propose a Multi-classification-based Shape$\&$Scale Matching (MSM) loss to supervise the above process. Extensive experiments on KITTI and Waymo Open datasets demonstrate that S$^3$-DA significantly improves the detection accuracy, yielding state-of-the-art performance of single-category and multi-category 3D object detection in a single training process compared to the existing approaches. The source code will be made publicly available at //github.com/mikasa3lili/S3-MonoDETR.

Defect detection aims to detect and localize regions out of the normal distribution.Previous approaches model normality and compare it with the input to identify defective regions, potentially limiting their generalizability.This paper proposes a one-stage framework that detects defective patterns directly without the modeling process.This ability is adopted through the joint efforts of three parties: a generative adversarial network (GAN), a newly proposed scaled pattern loss, and a dynamic masked cycle-consistent auxiliary network. Explicit information that could indicate the position of defects is intentionally excluded to avoid learning any direct mapping.Experimental results on the texture class of the challenging MVTec AD dataset show that the proposed method is 2.9% higher than the SOTA methods in F1-Score, while substantially outperforming SOTA methods in generalizability.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司