亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

40 years ago, Conway and Sloane proposed using the highly symmetrical Coxeter-Todd lattice $K_{12}$ for quantization, and estimated its second moment. Since then, all published lists identify $K_{12}$ as the best 12-dimensional lattice quantizer. Surprisingly, $K_{12}$ is not optimal: we construct two new 12-dimensional lattices with lower normalized second moments. The new lattices are obtained by gluing together 6-dimensional lattices.

相關內容

We present the Trust Region Adversarial Functional Subdifferential (TRAFS) algorithm for constrained optimization of nonsmooth convex Lipschitz functions. Unlike previous methods that assume a subgradient oracle model, we work with the functional subdifferential defined as a set of subgradients that simultaneously captures sufficient local information for effective minimization while being easy to compute for a wide range of functions. In each iteration, TRAFS finds the best step vector in an $\ell_2$-bounded trust region by considering the worst bound given by the functional subdifferential. TRAFS finds an approximate solution with an absolute error up to $\epsilon$ in $\mathcal{O}\left( \epsilon^{-1}\right)$ or $\mathcal{O}\left(\epsilon^{-0.5} \right)$ iterations depending on whether the objective function is strongly convex, compared to the previously best-known bounds of $\mathcal{O}\left(\epsilon^{-2}\right)$ and $\mathcal{O}\left(\epsilon^{-1}\right)$ in these settings. TRAFS makes faster progress if the functional subdifferential satisfies a locally quadratic property; as a corollary, TRAFS achieves linear convergence (i.e., $\mathcal{O}\left(\log \epsilon^{-1}\right)$) for strongly convex smooth functions. In the numerical experiments, TRAFS is on average 39.1x faster and solves twice as many problems compared to the second-best method.

Determining unknown parameter values in dynamic models is crucial for accurate analysis of the dynamics across the different scientific disciplines. Discrete-time dynamic models are widely used to model biological processes, but it is often difficult to determine these parameters. In this paper, we propose a robust symbolic-numeric approach for parameter estimation in discrete-time models that involve non-algebraic functions such as exp. We illustrate the performance (precision) of our approach by applying our approach to the flour beetle (LPA) model, an archetypal discrete-time model in biology. Unlike optimization-based methods, our algorithm guarantees to find all solutions of the parameter values given time-series data for the measured variables.

We consider B\'ezier curves with complex parameter, and we determine explicitly the affine iterated function system (IFS) corresponding to the de Casteljau subdivision algorithm, together with the complex parametric domain over which such an IFS has a unique global connected attractor. For a specific family of complex parameter having vanishing imaginary part, we prove that the Takagi fractal curve is the attractor, under suitable scaling.

This manuscript summarizes the outcome of the focus groups at "The f(A)bulous workshop on matrix functions and exponential integrators", held at the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, Germany, on 25-27 September 2023. There were three focus groups in total, each with a different theme: knowledge transfer, high-performance and energy-aware computing, and benchmarking. We collect insights, open issues, and perspectives from each focus group, as well as from general discussions throughout the workshop. Our primary aim is to highlight ripe research directions and continue to build on the momentum from a lively meeting.

We establish several properties of (weighted) generalized $\psi$-estimators introduced by Barczy and P\'ales in 2022: mean-type, monotonicity and sensitivity properties, bisymmetry-type inequality and some asymptotic and continuity properties as well. We also illustrate these properties by providing several examples including statistical ones as well.

Concurrency is an important aspect of (Petri) nets to describe and simulate the behavior of complex systems. Knowing which places and transitions could be executed in parallel helps to understand nets and enables analysis techniques and the computation of other properties, such as causality, exclusivity, etc.. All techniques based on concurrency detection depend on the efficiency of this detection methodology. Kovalyov and Esparza have developed algorithms that compute all concurrent places in $O\big((P+T)TP^2\big)$ for live nets (where $P$ and $T$ are the numbers of places and transitions) and in $O\big(P(P+T)^2\big)$ for live free-choice nets. Although these algorithms have a reasonably good computational complexity, large numbers of concurrent pairs of nodes may still lead to long computation times. Furthermore, both algorithms cannot be parallelized without additional effort. This paper complements the palette of concurrency detection algorithms with the Concurrent Paths (CP) algorithm for safe, live, free-choice nets. The algorithm allows parallelization and has a worst-case computational complexity of $O\big((P+T)^2\big)$ for acyclic nets and of $O\big(P^3+PT^2\big)$ for cyclic nets. Although the computational complexity of cyclic nets has not improved, the evaluation shows the benefits of CP, especially, if the net contains many nodes in concurrency relation.

We consider the success probability of the $L_0$-regularized box-constrained Babai point, which is a suboptimal solution to the $L_0$-regularized box-constrained integer least squares problem and can be used for MIMO detection. First, we derive formulas for the success probability of both $L_0$-regularized and unregularized box-constrained Babai points. Then we investigate the properties of the $L_0$-regularized box-constrained Babai point, including the optimality of the regularization parameter, the monotonicity of its success probability, and the monotonicity of the ratio of the two success probabilities. A bound on the success probability of the $L_0$-regularized Babai point is derived. After that, we analyze the effect of the LLL-P permutation strategy on the success probability of the $L_0$-regularized Babai point. Then we propose some success probability based column permutation strategies to increase the success probability of the $L_0$-regularized box-constrained Babai point. Finally, we present numerical tests to confirm our theoretical results and to show the advantage of the $L_0$ regularization and the effectiveness of the proposed column permutation algorithms compared to existing strategies.

We analyze the optimized adaptive importance sampler (OAIS) for performing Monte Carlo integration with general proposals. We leverage a classical result which shows that the bias and the mean-squared error (MSE) of the importance sampling scales with the $\chi^2$-divergence between the target and the proposal and develop a scheme which performs global optimization of $\chi^2$-divergence. While it is known that this quantity is convex for exponential family proposals, the case of the general proposals has been an open problem. We close this gap by utilizing the nonasymptotic bounds for stochastic gradient Langevin dynamics (SGLD) for the global optimization of $\chi^2$-divergence and derive nonasymptotic bounds for the MSE by leveraging recent results from non-convex optimization literature. The resulting AIS schemes have explicit theoretical guarantees that are uniform-in-time.

A fast and flexible $k$NN procedure is developed for dealing with a semiparametric functional regression model involving both partial-linear and single-index components. Rates of uniform consistency are presented. Simulated experiments highlight the advantages of the $k$NN procedure. A real data analysis is also shown.

In arXiv:2305.03945 [math.NA], a first-order optimization algorithm has been introduced to solve time-implicit schemes of reaction-diffusion equations. In this research, we conduct theoretical studies on this first-order algorithm equipped with a quadratic regularization term. We provide sufficient conditions under which the proposed algorithm and its time-continuous limit converge exponentially fast to a desired time-implicit numerical solution. We show both theoretically and numerically that the convergence rate is independent of the grid size, which makes our method suitable for large-scale problems. The efficiency of our algorithm has been verified via a series of numerical examples conducted on various types of reaction-diffusion equations. The choice of optimal hyperparameters as well as comparisons with some classical root-finding algorithms are also discussed in the numerical section.

北京阿比特科技有限公司