亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Algorithmic stablecoins (AS) are one special type of stablecoins that are not backed by any asset (equiv. without collateral). They stand to revolutionize the way a sovereign fiat operates. As implemented, these coins are poorly stabilized in most cases, easily deviating from the price target or even falling into a catastrophic collapse (a.k.a. Death spiral), and are as a result dismissed as a Ponzi scheme. However, is this the whole picture? In this paper, we try to reveal the truth and clarify such a deceptive concept. We find that Ponzi is basically a financial protocol that pays existing investors with funds collected from new ones. Running a Ponzi, however, does not necessarily imply that any participant is in any sense losing out, as long as the game can be perpetually rolled over. Economists call such realization as a \textit{rational Ponzi game}. We thereby propose a rational model in the context of AS and draw its holding conditions. We apply the model to examine: \textit{whether or not the algorithmic stablecoin is a rational Ponzi game.} Accordingly, we discuss two types of algorithmic stablecoins (\text{Rebase} \& \text{Seigniorage shares}) and dig into the historical market performance of two impactful projects (\text{Ampleforth} \& \text{TerraUSD}, respectively) to demonstrate the effectiveness of our model.

相關內容

在(zai)數(shu)學(xue)(xue)和計(ji)算(suan)(suan)(suan)機科學(xue)(xue)之中,算(suan)(suan)(suan)法(fa)(Algorithm)為(wei)一(yi)個計(ji)算(suan)(suan)(suan)的具(ju)體步驟,常用(yong)(yong)于計(ji)算(suan)(suan)(suan)、數(shu)據處理和自動推理。精確而(er)言,算(suan)(suan)(suan)法(fa)是一(yi)個表示為(wei)有(you)限(xian)長列表的有(you)效方法(fa)。算(suan)(suan)(suan)法(fa)應包含清晰(xi)定義的指令用(yong)(yong)于計(ji)算(suan)(suan)(suan)函數(shu)。 來(lai)自維基百科:

When using machine learning (ML) to aid decision-making, it is critical to ensure that an algorithmic decision is fair, i.e., it does not discriminate against specific individuals/groups, particularly those from underprivileged populations. Existing group fairness methods require equal group-wise measures, which however fails to consider systematic between-group differences. The confounding factors, which are non-sensitive variables but manifest systematic differences, can significantly affect fairness evaluation. To mitigate this problem, we believe that a fairness measurement should be based on the comparison between counterparts (i.e., individuals who are similar to each other with respect to the task of interest) from different groups, whose group identities cannot be distinguished algorithmically by exploring confounding factors. We have developed a propensity-score-based method for identifying counterparts, which prevents fairness evaluation from comparing "oranges" with "apples". In addition, we propose a counterpart-based statistical fairness index, termed Counterpart-Fairness (CFair), to assess fairness of ML models. Empirical studies on the Medical Information Mart for Intensive Care (MIMIC)-IV database were conducted to validate the effectiveness of CFair. We publish our code at \url{//github.com/zhengyjo/CFair}.

We present AIRS: Automatic Intrinsic Reward Shaping that intelligently and adaptively provides high-quality intrinsic rewards to enhance exploration in reinforcement learning (RL). More specifically, AIRS selects shaping function from a predefined set based on the estimated task return in real-time, providing reliable exploration incentives and alleviating the biased objective problem. Moreover, we develop an intrinsic reward toolkit to provide efficient and reliable implementations of diverse intrinsic reward approaches. We test AIRS on various tasks of MiniGrid, Procgen, and DeepMind Control Suite. Extensive simulation demonstrates that AIRS can outperform the benchmarking schemes and achieve superior performance with simple architecture.

The framework of multi-agent learning explores the dynamics of how individual agent strategies evolve in response to the evolving strategies of other agents. Of particular interest is whether or not agent strategies converge to well known solution concepts such as Nash Equilibrium (NE). Most ``fixed order'' learning dynamics restrict an agent's underlying state to be its own strategy. In ``higher order'' learning, agent dynamics can include auxiliary states that can capture phenomena such as path dependencies. We introduce higher-order gradient play dynamics that resemble projected gradient ascent with auxiliary states. The dynamics are ``payoff based'' in that each agent's dynamics depend on its own evolving payoff. While these payoffs depend on the strategies of other agents in a game setting, agent dynamics do not depend explicitly on the nature of the game or the strategies of other agents. In this sense, dynamics are ``uncoupled'' since an agent's dynamics do not depend explicitly on the utility functions of other agents. We first show that for any specific game with an isolated completely mixed-strategy NE, there exist higher-order gradient play dynamics that lead (locally) to that NE, both for the specific game and nearby games with perturbed utility functions. Conversely, we show that for any higher-order gradient play dynamics, there exists a game with a unique isolated completely mixed-strategy NE for which the dynamics do not lead to NE. These results build on prior work that showed that uncoupled fixed-order learning cannot lead to NE in certain instances, whereas higher-order variants can. Finally, we consider the mixed-strategy equilibrium associated with coordination games. While higher-order gradient play can converge to such equilibria, we show such dynamics must be inherently internally unstable.

The explicit incorporation of task-specific inductive biases through symmetry has emerged as a general design precept in the development of high-performance machine learning models. For example, group equivariant neural networks have demonstrated impressive performance across various domains and applications such as protein and drug design. A prevalent intuition about such models is that the integration of relevant symmetry results in enhanced generalization. Moreover, it is posited that when the data and/or the model may only exhibit $\textit{approximate}$ or $\textit{partial}$ symmetry, the optimal or best-performing model is one where the model symmetry aligns with the data symmetry. In this paper, we conduct a formal unified investigation of these intuitions. To begin, we present general quantitative bounds that demonstrate how models capturing task-specific symmetries lead to improved generalization. In fact, our results do not require the transformations to be finite or even form a group and can work with partial or approximate equivariance. Utilizing this quantification, we examine the more general question of model mis-specification i.e. when the model symmetries don't align with the data symmetries. We establish, for a given symmetry group, a quantitative comparison between the approximate/partial equivariance of the model and that of the data distribution, precisely connecting model equivariance error and data equivariance error. Our result delineates conditions under which the model equivariance error is optimal, thereby yielding the best-performing model for the given task and data.

Personalised interactive systems such as recommender systems require selecting relevant items from massive catalogs dependent on context. Reward-driven offline optimisation of these systems can be achieved by a relaxation of the discrete problem resulting in policy learning or REINFORCE style learning algorithms. Unfortunately, this relaxation step requires computing a sum over the entire catalogue making the complexity of the evaluation of the gradient (and hence each stochastic gradient descent iterations) linear in the catalogue size. This calculation is untenable in many real world examples such as large catalogue recommender systems, severely limiting the usefulness of this method in practice. In this paper, we derive an approximation of these policy learning algorithms that scale logarithmically with the catalogue size. Our contribution is based upon combining three novel ideas: a new Monte Carlo estimate of the gradient of a policy, the self normalised importance sampling estimator and the use of fast maximum inner product search at training time. Extensive experiments show that our algorithm is an order of magnitude faster than naive approaches yet produces equally good policies.

Search engines, such as Google, have a considerable impact on society. Therefore, undesirable consequences, such as retrieving incorrect search results, pose a risk to users. Although previous research has reported the adverse outcomes of web search, little is known about how search engine users evaluate those outcomes. In this study, we show which aspects of web search are perceived as risky using a sample (N = 3,884) representative of the German Internet population. We found that many participants are often concerned with adverse consequences immediately appearing on the search engine result page. Moreover, participants' experiences with adverse consequences are directly related to their risk perception. Our results demonstrate that people perceive risks related to web search. In addition to our study, there is a need for more independent research on the possible detrimental outcomes of web search to monitor and mitigate risks. Apart from risks for individuals, search engines with a massive number of users have an extraordinary impact on society; therefore, the acceptable risks of web search should be discussed.

Content Warning: This work contains examples that potentially implicate stereotypes, associations, and other harms that could be offensive to individuals in certain social groups.} Large pre-trained language models are acknowledged to carry social biases towards different demographics, which can further amplify existing stereotypes in our society and cause even more harm. Text-to-SQL is an important task, models of which are mainly adopted by administrative industries, where unfair decisions may lead to catastrophic consequences. However, existing Text-to-SQL models are trained on clean, neutral datasets, such as Spider and WikiSQL. This, to some extent, cover up social bias in models under ideal conditions, which nevertheless may emerge in real application scenarios. In this work, we aim to uncover and categorize social biases in Text-to-SQL models. We summarize the categories of social biases that may occur in structured data for Text-to-SQL models. We build test benchmarks and reveal that models with similar task accuracy can contain social biases at very different rates. We show how to take advantage of our methodology to uncover and assess social biases in the downstream Text-to-SQL task. We will release our code and data.

Deduction modulo is a way to express a theory using computation rules instead of axioms. We present in this paper an extension of deduction modulo, called Polarized deduction modulo, where some rules can only be used at positive occurrences, while others can only be used at negative ones. We show that all theories in propositional calculus can be expressed in this framework and that cuts can always be eliminated with such theories.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

What is learned by sophisticated neural network agents such as AlphaZero? This question is of both scientific and practical interest. If the representations of strong neural networks bear no resemblance to human concepts, our ability to understand faithful explanations of their decisions will be restricted, ultimately limiting what we can achieve with neural network interpretability. In this work we provide evidence that human knowledge is acquired by the AlphaZero neural network as it trains on the game of chess. By probing for a broad range of human chess concepts we show when and where these concepts are represented in the AlphaZero network. We also provide a behavioural analysis focusing on opening play, including qualitative analysis from chess Grandmaster Vladimir Kramnik. Finally, we carry out a preliminary investigation looking at the low-level details of AlphaZero's representations, and make the resulting behavioural and representational analyses available online.

北京阿比特科技有限公司