亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, a Priority-based Dynamic REsource Allocation with decentralized Multi-task assignment (P-DREAM) approach is presented to protect a territory from highly manoeuvring intruders. In the first part, static optimization problems are formulated to compute the following parameters of the perimeter defense problem; the number of reserve stations, their locations, the priority region, the monitoring region, and the minimum number of defenders required for the monitoring purpose. The concept of a prioritized intruder is proposed here to identify and handle those critical intruders (computed based on the velocity ratio and location) to be tackled on a priority basis. The computed priority region helps to assign reserve defenders sufficiently earlier such that they can neutralize the prioritized intruders. The monitoring region defines the minimum region to be monitored and is sufficient enough to handle the intruders. In the second part, the earlier developed DREAM approach is modified to incorporate the priority of an intruder. The proposed P-DREAM approach assigns the defenders to the prioritized intruders as the first task. A convex territory protection problem is simulated to illustrate the P-DREAM approach. It involves the computation of static parameters and solving the prioritized task assignments with dynamic resource allocation. Monte-Carlo results were conducted to verify the performance of P-DREAM, and the results clearly show that the P-DREAM approach can protect the territory with consistent performance against highly manoeuvring intruders.

相關內容

This paper summarizes the results of experimenting with Universal Dependencies (UD) adaptation of an Unsupervised, Compositional and Recursive (UCR) rule-based approach for Sentiment Analysis (SA) submitted to the Shared Task at Rest-Mex 2023 (Team Olga/LyS-SALSA) (within the IberLEF 2023 conference). By using basic syntactic rules such as rules of modification and negation applied on words from sentiment dictionaries, our approach exploits some advantages of an unsupervised method for SA: (1) interpretability and explainability of SA, (2) robustness across datasets, languages and domains and (3) usability by non-experts in NLP. We compare our approach with other unsupervised approaches of SA that in contrast to our UCR rule-based approach use simple heuristic rules to deal with negation and modification. Our results show a considerable improvement over these approaches. We discuss future improvements of our results by using modality features as another shifting rule of polarity and word disambiguation techniques to identify the right sentiment words.

In this paper, we introduce and analyze a lowest-order locking-free weak Galerkin (WG) finite element scheme for the grad-div formulation of linear elasticity problems. The scheme uses linear functions in the interior of mesh elements and constants on edges (2D) or faces (3D), respectively, to approximate the displacement. An $H(div)$-conforming displacement reconstruction operator is employed to modify test functions in the right-hand side of the discrete form, in order to eliminate the dependence of the $Lam\acute{e}$ parameter $\lambda$ in error estimates, i.e., making the scheme locking-free. The method works without requiring $\lambda \|\nabla\cdot \mathbf{u}\|_1$ to be bounded. We prove optimal error estimates, independent of $\lambda$, in both the $H^1$-norm and the $L^2$-norm. Numerical experiments validate that the method is effective and locking-free.

We propose EmoDistill, a novel speech emotion recognition (SER) framework that leverages cross-modal knowledge distillation during training to learn strong linguistic and prosodic representations of emotion from speech. During inference, our method only uses a stream of speech signals to perform unimodal SER thus reducing computation overhead and avoiding run-time transcription and prosodic feature extraction errors. During training, our method distills information at both embedding and logit levels from a pair of pre-trained Prosodic and Linguistic teachers that are fine-tuned for SER. Experiments on the IEMOCAP benchmark demonstrate that our method outperforms other unimodal and multimodal techniques by a considerable margin, and achieves state-of-the-art performance of 77.49% unweighted accuracy and 78.91% weighted accuracy. Detailed ablation studies demonstrate the impact of each component of our method.

In this paper the Micro-Macro Parareal algorithm was adapted to PDEs. The parallel-in-time approach requires two meshes of different spatial resolution in order to compute approximations in an iterative way to a predefined reference solution. When fast convergence in few iterations can be accomplished the algorithm is able to generate wall-time reduction in comparison to the serial computation. We chose the laminar flow around a cylinder benchmark on 2-dimensional domain which was simulated with the open-source software OpenFoam. The numerical experiments presented in this work aim to approximate states local in time and space and the diagnostic lift coefficient. The Reynolds number is gradually increased from 100 to 1,000, before the transition to turbulent flows sets in. After the results are presented the convergence behavior is discussed with respect to the Reynolds number and the applied interpolation schemes.

In this paper we propose RecFusion, which comprise a set of diffusion models for recommendation. Unlike image data which contain spatial correlations, a user-item interaction matrix, commonly utilized in recommendation, lacks spatial relationships between users and items. We formulate diffusion on a 1D vector and propose binomial diffusion, which explicitly models binary user-item interactions with a Bernoulli process. We show that RecFusion approaches the performance of complex VAE baselines on the core recommendation setting (top-n recommendation for binary non-sequential feedback) and the most common datasets (MovieLens and Netflix). Our proposed diffusion models that are specialized for 1D and/or binary setups have implications beyond recommendation systems, such as in the medical domain with MRI and CT scans.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司