When we consider our CV, it is full of entities that we are or were associated with and that define us in some way(s). Such entities include where we studied, where we worked, who we collaborated with on a project or on a paper etc. Entities we are linked to are part of who we are and may reveal about what we are interested in. Hence, we can view any CV as a graph of interlinked entities, where nodes are entities and edges are relations between them. This study proposes a novel entity search framework that in response to a real-time query about an entity, searches, crawls, analyzes and consolidates relevant information that is freely available on the Web about the entity of interest, culminating in the generation a profile of the searched entity. Unlike typical entity search settings, in which a ranked list of entities related to the target entity over a pre-specified relation is processed, we present and visualize rich information about the entity of interest as a typed entity-relation graph without an apriori definition of the types of related entities and relations. This view is structured and compact, making it easy to understand as well as interpret. It enables the user to learn not only about the entity in question, but also about related entities, thereby obtaining a better understanding of the entity in question. We evaluated each of the frameworks components separately and then performed an overall evaluation of the framework, its visualization and the interest of users in the results. The results show that the proposed framework performs entity searches, related entity identification and relation identification very well and that it satisfies users needs.
An automated contextual suggestion algorithm is likely to recommend contextually appropriate and personalized 'points-of-interest' (POIs) to a user, if it can extract information from the user's preference history (exploitation) and effectively blend it with the user's current contextual information (exploration) to predict a POI's 'appropriateness' in the current context. To balance this trade-off between exploitation and exploration, we propose an unsupervised, generic framework involving a factored relevance model (FRLM), constituting two distinct components, one pertaining to historical contexts, and the other corresponding to the current context. We further generalize the proposed FRLM by incorporating the semantic relationships between terms in POI descriptors using kernel density estimation (KDE) on embedded word vectors. Additionally, we show that trip-qualifiers, (e.g. 'trip-type', 'accompanied-by') are potentially useful information sources that could be used to improve the recommendation effectiveness. Using such information is not straight forward since users' texts/reviews of visited POIs typically do not explicitly contain such annotations. We undertake a weakly supervised approach to predict the associations between the review-texts in a user profile and the likely trip contexts. Our experiments, conducted on the TREC contextual suggestion 2016 dataset, demonstrate that factorization, KDE-based generalizations, and trip-qualifier enriched contexts of the relevance model improve POI recommendation.
Recently, biclustering is one of the hot topics in bioinformatics and takes the attention of authors from several different disciplines. Hence, many different methodologies from a variety of disciplines are proposed as a solution to the biclustering problem. As a consequence of this issue, a variety of solutions makes it harder to evaluate the proposed methods. With this review paper, we are aimed to discuss both analysis and visualization of biclustering as a guide for the comparisons between brand new and existing biclustering algorithms. Additionally, we concentrate on the tools that provide visualizations with accompanied analysis techniques. Through the paper, we give several references that are also a short review of the state of the art for the ones who will pursue research on biclustering. The Paper outline is as follows; we first give the visualization and analysis methods, then we evaluate each proposed tool with the visualization contribution and analysis options, finally, we discuss future directions for biclustering and we propose standards for future work.
The relevance of the Key Information Extraction (KIE) task is increasingly important in natural language processing problems. But there are still only a few well-defined problems that serve as benchmarks for solutions in this area. To bridge this gap, we introduce two new datasets (Kleister NDA and Kleister Charity). They involve a mix of scanned and born-digital long formal English-language documents. In these datasets, an NLP system is expected to find or infer various types of entities by employing both textual and structural layout features. The Kleister Charity dataset consists of 2,788 annual financial reports of charity organizations, with 61,643 unique pages and 21,612 entities to extract. The Kleister NDA dataset has 540 Non-disclosure Agreements, with 3,229 unique pages and 2,160 entities to extract. We provide several state-of-the-art baseline systems from the KIE domain (Flair, BERT, RoBERTa, LayoutLM, LAMBERT), which show that our datasets pose a strong challenge to existing models. The best model achieved an 81.77% and an 83.57% F1-score on respectively the Kleister NDA and the Kleister Charity datasets. We share the datasets to encourage progress on more in-depth and complex information extraction tasks.
The explanation dimension of Artificial Intelligence (AI) based system has been a hot topic for the past years. Different communities have raised concerns about the increasing presence of AI in people's everyday tasks and how it can affect people's lives. There is a lot of research addressing the interpretability and transparency concepts of explainable AI (XAI), which are usually related to algorithms and Machine Learning (ML) models. But in decision-making scenarios, people need more awareness of how AI works and its outcomes to build a relationship with that system. Decision-makers usually need to justify their decision to others in different domains. If that decision is somehow based on or influenced by an AI-system outcome, the explanation about how the AI reached that result is key to building trust between AI and humans in decision-making scenarios. In this position paper, we discuss the role of XAI in decision-making scenarios, our vision of Decision-Making with AI-system in the loop, and explore one case from the literature about how XAI can impact people justifying their decisions, considering the importance of building the human-AI relationship for those scenarios.
Entity linking (EL) for the rapidly growing short text (e.g. search queries and news titles) is critical to industrial applications. Most existing approaches relying on adequate context for long text EL are not effective for the concise and sparse short text. In this paper, we propose a novel framework called Multi-turn Multiple-choice Machine reading comprehension (M3}) to solve the short text EL from a new perspective: a query is generated for each ambiguous mention exploiting its surrounding context, and an option selection module is employed to identify the golden entity from candidates using the query. In this way, M3 framework sufficiently interacts limited context with candidate entities during the encoding process, as well as implicitly considers the dissimilarities inside the candidate bunch in the selection stage. In addition, we design a two-stage verifier incorporated into M3 to address the commonly existed unlinkable problem in short text. To further consider the topical coherence and interdependence among referred entities, M3 leverages a multi-turn fashion to deal with mentions in a sequence manner by retrospecting historical cues. Evaluation shows that our M3 framework achieves the state-of-the-art performance on five Chinese and English datasets for the real-world short text EL.
Fine-grained entity typing is a challenging problem since it usually involves a relatively large tag set and may require to understand the context of the entity mention. In this paper, we use entity linking to help with the fine-grained entity type classification process. We propose a deep neural model that makes predictions based on both the context and the information obtained from entity linking results. Experimental results on two commonly used datasets demonstrates the effectiveness of our approach. On both datasets, it achieves more than 5\% absolute strict accuracy improvement over the state of the art.
This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a sequential labeling task and annotate entities consecutively, MGNER detects and recognizes entities on multiple granularities: it is able to recognize named entities without explicitly assuming non-overlapping or totally nested structures. MGNER consists of a Detector that examines all possible word segments and a Classifier that categorizes entities. In addition, contextual information and a self-attention mechanism are utilized throughout the framework to improve the NER performance. Experimental results show that MGNER outperforms current state-of-the-art baselines up to 4.4% in terms of the F1 score among nested/non-overlapping NER tasks.
Incorporating knowledge graph (KG) into recommender system is promising in improving the recommendation accuracy and explainability. However, existing methods largely assume that a KG is complete and simply transfer the "knowledge" in KG at the shallow level of entity raw data or embeddings. This may lead to suboptimal performance, since a practical KG can hardly be complete, and it is common that a KG has missing facts, relations, and entities. Thus, we argue that it is crucial to consider the incomplete nature of KG when incorporating it into recommender system. In this paper, we jointly learn the model of recommendation and knowledge graph completion. Distinct from previous KG-based recommendation methods, we transfer the relation information in KG, so as to understand the reasons that a user likes an item. As an example, if a user has watched several movies directed by (relation) the same person (entity), we can infer that the director relation plays a critical role when the user makes the decision, thus help to understand the user's preference at a finer granularity. Technically, we contribute a new translation-based recommendation model, which specially accounts for various preferences in translating a user to an item, and then jointly train it with a KG completion model by combining several transfer schemes. Extensive experiments on two benchmark datasets show that our method outperforms state-of-the-art KG-based recommendation methods. Further analysis verifies the positive effect of joint training on both tasks of recommendation and KG completion, and the advantage of our model in understanding user preference. We publish our project at //github.com/TaoMiner/joint-kg-recommender.
Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.
Social Media users tend to mention entities when reacting to news events. The main purpose of this work is to create entity-centric aggregations of tweets on a daily basis. By applying topic modeling and sentiment analysis, we create data visualization insights about current events and people reactions to those events from an entity-centric perspective.