亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

News recommendation plays a critical role in shaping the public's worldviews through the way in which it filters and disseminates information about different topics. Given the crucial impact that media plays in opinion formation, especially for sensitive topics, understanding the effects of personalized recommendation beyond accuracy has become essential in today's digital society. In this work, we present NeMig, a bilingual news collection on the topic of migration, and corresponding rich user data. In comparison to existing news recommendation datasets, which comprise a large variety of monolingual news, NeMig covers articles on a single controversial topic, published in both Germany and the US. We annotate the sentiment polarization of the articles and the political leanings of the media outlets, in addition to extracting subtopics and named entities disambiguated through Wikidata. These features can be used to analyze the effects of algorithmic news curation beyond accuracy-based performance, such as recommender biases and the creation of filter bubbles. We construct domain-specific knowledge graphs from the news text and metadata, thus encoding knowledge-level connections between articles. Importantly, while existing datasets include only click behavior, we collect user socio-demographic and political information in addition to explicit click feedback. We demonstrate the utility of NeMig through experiments on the tasks of news recommenders benchmarking, analysis of biases in recommenders, and news trends analysis. NeMig aims to provide a useful resource for the news recommendation community and to foster interdisciplinary research into the multidimensional effects of algorithmic news curation.

相關內容

The escalating number of pending cases is a growing concern world-wide. Recent advancements in digitization have opened up possibilities for leveraging artificial intelligence (AI) tools in the processing of legal documents. Adopting a structured representation for legal documents, as opposed to a mere bag-of-words flat text representation, can significantly enhance processing capabilities. With the aim of achieving this objective, we put forward a set of diverse attributes for criminal case proceedings. We use a state-of-the-art sequence labeling framework to automatically extract attributes from the legal documents. Moreover, we demonstrate the efficacy of the extracted attributes in a downstream task, namely legal judgment prediction.

Zero-shot Dialogue State Tracking (DST) addresses the challenge of acquiring and annotating task-oriented dialogues, which can be time consuming and costly. However, DST extends beyond simple slot-filling and requires effective updating strategies for tracking dialogue state as conversations progress. In this paper, we propose ParsingDST, a new In-Context Learning (ICL) method, to introduce additional intricate updating strategies in zero-shot DST. Our approach reformulates the DST task by leveraging powerful Large Language Models (LLMs) and translating the original dialogue text to JSON through semantic parsing as an intermediate state. We also design a novel framework that includes more modules to ensure the effectiveness of updating strategies in the text-to-JSON process. Experimental results demonstrate that our approach outperforms existing zero-shot DST methods on MultiWOZ, exhibiting significant improvements in Joint Goal Accuracy (JGA) and slot accuracy compared to existing ICL methods.

The registration of pathological images plays an important role in medical applications. Despite its significance, most researchers in this field primarily focus on the registration of normal tissue into normal tissue. The negative impact of focal tissue, such as the loss of spatial correspondence information and the abnormal distortion of tissue, are rarely considered. In this paper, we propose GIRNet, a novel unsupervised approach for pathological image registration by incorporating segmentation and inpainting through the principles of Generation, Inpainting, and Registration (GIR). The registration, segmentation, and inpainting modules are trained simultaneously in a co-learning manner so that the segmentation of the focal area and the registration of inpainted pairs can improve collaboratively. Overall, the registration of pathological images is achieved in a completely unsupervised learning framework. Experimental results on multiple datasets, including Magnetic Resonance Imaging (MRI) of T1 sequences, demonstrate the efficacy of our proposed method. Our results show that our method can accurately achieve the registration of pathological images and identify lesions even in challenging imaging modalities. Our unsupervised approach offers a promising solution for the efficient and cost-effective registration of pathological images. Our code is available at //github.com/brain-intelligence-lab/GIRNet.

Network slicing plays a crucial role in the progression of 5G and beyond, facilitating dedicated logical networks to meet diverse and specific service requirements. The principle of End-to-End (E2E) slice includes not only a service chain of physical or virtual functions for the radio and core of 5G/6G networks but also the full path to the application servers that might be running at some edge computing or at central cloud. Nonetheless, the development and optimization of E2E network slice management systems necessitate a reliable simulation tool for evaluating different aspects at large-scale network topologies such as resource allocation and function placement models. This paper introduces Slicenet, a mininetlike simulator crafted for E2E network slicing experimentation at the flow level. Slicenet aims at facilitating the investigation of a wide range of slice optimization techniques, delivering measurable, reproducible results without the need for physical resources or complex integration tools. It provides a well-defined process for conducting experiments, which includes the creation and implementation of policies for various components such as edge and central cloud resources, network functions of multiple slices of different characteristics. Furthermore, Slicenet effortlessly produces meaningful visualizations from simulation results, aiding in comprehensive understanding. Utilizing Slicenet, service providers can derive invaluable insights into resource optimization, capacity planning, Quality of Service (QoS) assessment, cost optimization, performance comparison, risk mitigation, and Service Level Agreement (SLA) compliance, thereby fortifying network resource management and slice orchestration.

Deployment of teams of aerial robots could enable large-scale filming of dynamic groups of people (actors) in complex environments for novel applications in areas such as team sports and cinematography. Toward this end, methods for submodular maximization via sequential greedy planning can be used for scalable optimization of camera views across teams of robots but face challenges with efficient coordination in cluttered environments. Obstacles can produce occlusions and increase chances of inter-robot collision which can violate requirements for near-optimality guarantees. To coordinate teams of aerial robots in filming groups of people in dense environments, a more general view-planning approach is required. We explore how collision and occlusion impact performance in filming applications through the development of a multi-robot multi-actor view planner with an occlusion-aware objective for filming groups of people and compare with a greedy formation planner. To evaluate performance, we plan in five test environments with complex multiple-actor behaviors. Compared with a formation planner, our sequential planner generates 14% greater view reward over the actors for three scenarios and comparable performance to formation planning on two others. We also observe near identical performance of sequential planning both with and without inter-robot collision constraints. Overall, we demonstrate effective coordination of teams of aerial robots for filming groups that may split, merge, or spread apart and in environments cluttered with obstacles that may cause collisions or occlusions.

To alleviate the heavy annotation burden for training a reliable crowd counting model and thus make the model more practicable and accurate by being able to benefit from more data, this paper presents a new semi-supervised method based on the mean teacher framework. When there is a scarcity of labeled data available, the model is prone to overfit local patches. Within such contexts, the conventional approach of solely improving the accuracy of local patch predictions through unlabeled data proves inadequate. Consequently, we propose a more nuanced approach: fostering the model's intrinsic 'subitizing' capability. This ability allows the model to accurately estimate the count in regions by leveraging its understanding of the crowd scenes, mirroring the human cognitive process. To achieve this goal, we apply masking on unlabeled data, guiding the model to make predictions for these masked patches based on the holistic cues. Furthermore, to help with feature learning, herein we incorporate a fine-grained density classification task. Our method is general and applicable to most existing crowd counting methods as it doesn't have strict structural or loss constraints. In addition, we observe that the model trained with our framework exhibits a 'subitizing'-like behavior. It accurately predicts low-density regions with only a 'glance', while incorporating local details to predict high-density regions. Our method achieves the state-of-the-art performance, surpassing previous approaches by a large margin on challenging benchmarks such as ShanghaiTech A and UCF-QNRF. The code is available at: //github.com/cha15yq/MRC-Crowd.

In the ever-evolving field of Artificial Intelligence, a critical challenge has been to decipher the decision-making processes within the so-called "black boxes" in deep learning. Over recent years, a plethora of methods have emerged, dedicated to explaining decisions across diverse tasks. Particularly in tasks like image classification, these methods typically identify and emphasize the pivotal pixels that most influence a classifier's prediction. Interestingly, this approach mirrors human behavior: when asked to explain our rationale for classifying an image, we often point to the most salient features or aspects. Capitalizing on this parallel, our research embarked on a user-centric study. We sought to objectively measure the interpretability of three leading explanation methods: (1) Prototypical Part Network, (2) Occlusion, and (3) Layer-wise Relevance Propagation. Intriguingly, our results highlight that while the regions spotlighted by these methods can vary widely, they all offer humans a nearly equivalent depth of understanding. This enables users to discern and categorize images efficiently, reinforcing the value of these methods in enhancing AI transparency.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司