亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cross-silo federated learning (FL) allows data owners to train accurate machine learning models by benefiting from each others private datasets. Unfortunately, the model accuracy benefits of collaboration are often undermined by privacy defenses. Therefore, to incentivize client participation in privacy-sensitive domains, a FL protocol should strike a delicate balance between privacy guarantees and end-model accuracy. In this paper, we study the question of when and how a server could design a FL protocol provably beneficial for all participants. First, we provide necessary and sufficient conditions for the existence of mutually beneficial protocols in the context of mean estimation and convex stochastic optimization. We also derive protocols that maximize the total clients' utility, given symmetric privacy preferences. Finally, we design protocols maximizing end-model accuracy and demonstrate their benefits in synthetic experiments.

相關內容

Decentralised learning enables the training of deep learning algorithms without centralising data sets, resulting in benefits such as improved data privacy, operational efficiency and the fostering of data ownership policies. However, significant data imbalances pose a challenge in this framework. Participants with smaller datasets in distributed learning environments often achieve poorer results than participants with larger datasets. Data imbalances are particularly pronounced in medical fields and are caused by different patient populations, technological inequalities and divergent data collection practices. In this paper, we consider distributed learning as an Stackelberg evolutionary game. We present two algorithms for setting the weights of each node's contribution to the global model in each training round: the Deterministic Stackelberg Weighting Model (DSWM) and the Adaptive Stackelberg Weighting Model (ASWM). We use three medical datasets to highlight the impact of dynamic weighting on underrepresented nodes in distributed learning. Our results show that the ASWM significantly favours underrepresented nodes by improving their performance by 2.713% in AUC. Meanwhile, nodes with larger datasets experience only a modest average performance decrease of 0.441%.

Step-level reward models (SRMs) can significantly enhance mathematical reasoning performance through process supervision or step-level preference alignment based on reinforcement learning. The performance of SRMs is pivotal, as they serve as critical guidelines, ensuring that each step in the reasoning process is aligned with desired outcomes. Recently, AlphaZero-like methods, where Monte Carlo Tree Search (MCTS) is employed for automatic step-level preference annotation, have proven particularly effective. However, the precise mechanisms behind the success of SRMs remain largely unexplored. To address this gap, this study delves into the counterintuitive aspects of SRMs, particularly focusing on MCTS-based approaches. Our findings reveal that the removal of natural language descriptions of thought processes has minimal impact on the efficacy of SRMs. Furthermore, we demonstrate that SRMs are adept at assessing the complex logical coherence present in mathematical language while having difficulty in natural language. These insights provide a nuanced understanding of the core elements that drive effective step-level reward modeling in mathematical reasoning. By shedding light on these mechanisms, this study offers valuable guidance for developing more efficient and streamlined SRMs, which can be achieved by focusing on the crucial parts of mathematical reasoning.

In multi-agent reinforcement learning (MARL), the centralized training with decentralized execution (CTDE) framework has gained widespread adoption due to its strong performance. However, the further development of CTDE faces two key challenges. First, agents struggle to autonomously assess the relevance of input information for cooperative tasks, impairing their decision-making abilities. Second, in communication-limited scenarios with partial observability, agents are unable to access global information, restricting their ability to collaborate effectively from a global perspective. To address these challenges, we introduce a novel cooperative MARL framework based on information selection and tacit learning. In this framework, agents gradually develop implicit coordination during training, enabling them to infer the cooperative behavior of others in a discrete space without communication, relying solely on local information. Moreover, we integrate gating and selection mechanisms, allowing agents to adaptively filter information based on environmental changes, thereby enhancing their decision-making capabilities. Experiments on popular MARL benchmarks show that our framework can be seamlessly integrated with state-of-the-art algorithms, leading to significant performance improvements.

Educational data mining (EDM) is a part of applied computing that focuses on automatically analyzing data from learning contexts. Early prediction for identifying at-risk students is a crucial and widely researched topic in EDM research. It enables instructors to support at-risk students to stay on track, preventing student dropout or failure. Previous studies have predicted students' learning performance to identify at-risk students by using machine learning on data collected from e-learning platforms. However, most studies aimed to identify at-risk students utilizing the entire course data after the course finished. This does not correspond to the real-world scenario that at-risk students may drop out before the course ends. To address this problem, we introduce an RNN-Attention-KD (knowledge distillation) framework to predict at-risk students early throughout a course. It leverages the strengths of Recurrent Neural Networks (RNNs) in handling time-sequence data to predict students' performance at each time step and employs an attention mechanism to focus on relevant time steps for improved predictive accuracy. At the same time, KD is applied to compress the time steps to facilitate early prediction. In an empirical evaluation, RNN-Attention-KD outperforms traditional neural network models in terms of recall and F1-measure. For example, it obtained recall and F1-measure of 0.49 and 0.51 for Weeks 1--3 and 0.51 and 0.61 for Weeks 1--6 across all datasets from four years of a university course. Then, an ablation study investigated the contributions of different knowledge transfer methods (distillation objectives). We found that hint loss from the hidden layer of RNN and context vector loss from the attention module on RNN could enhance the model's prediction performance for identifying at-risk students. These results are relevant for EDM researchers employing deep learning models.

Modern challenges of robustness, fairness, and decision-making in machine learning have led to the formulation of multi-distribution learning (MDL) frameworks in which a predictor is optimized across multiple distributions. We study the calibration properties of MDL to better understand how the predictor performs uniformly across the multiple distributions. Through classical results on decomposing proper scoring losses, we first derive the Bayes optimal rule for MDL, demonstrating that it maximizes the generalized entropy of the associated loss function. Our analysis reveals that while this approach ensures minimal worst-case loss, it can lead to non-uniform calibration errors across the multiple distributions and there is an inherent calibration-refinement trade-off, even at Bayes optimality. Our results highlight a critical limitation: despite the promise of MDL, one must use caution when designing predictors tailored to multiple distributions so as to minimize disparity.

Active learning (AL) techniques reduce labeling costs for training neural machine translation (NMT) models by selecting smaller representative subsets from unlabeled data for annotation. Diversity sampling techniques select heterogeneous instances, while uncertainty sampling methods select instances with the highest model uncertainty. Both approaches have limitations - diversity methods may extract varied but trivial examples, while uncertainty sampling can yield repetitive, uninformative instances. To bridge this gap, we propose Hybrid Uncertainty and Diversity Sampling (HUDS), an AL strategy for domain adaptation in NMT that combines uncertainty and diversity for sentence selection. HUDS computes uncertainty scores for unlabeled sentences and subsequently stratifies them. It then clusters sentence embeddings within each stratum and computes diversity scores by distance to the centroid. A weighted hybrid score that combines uncertainty and diversity is then used to select the top instances for annotation in each AL iteration. Experiments on multi-domain German-English and French-English datasets demonstrate the better performance of HUDS over other strong AL baselines. We analyze the sentence selection with HUDS and show that it prioritizes diverse instances having high model uncertainty for annotation in early AL iterations.

Decentralized federated learning (DFL) realizes cooperative model training among connected clients without relying on a central server, thereby mitigating communication bottlenecks and eliminating the single-point failure issue present in centralized federated learning (CFL). Most existing work on DFL focuses on supervised learning, assuming each client possesses sufficient labeled data for local training. However, in real-world applications, much of the data is unlabeled. We address this by considering a challenging yet practical semisupervised learning (SSL) scenario in DFL, where clients may have varying data sources: some with few labeled samples, some with purely unlabeled data, and others with both. In this work, we propose SemiDFL, the first semi-supervised DFL method that enhances DFL performance in SSL scenarios by establishing a consensus in both data and model spaces. Specifically, we utilize neighborhood information to improve the quality of pseudo-labeling, which is crucial for effectively leveraging unlabeled data. We then design a consensusbased diffusion model to generate synthesized data, which is used in combination with pseudo-labeled data to create mixed datasets. Additionally, we develop an adaptive aggregation method that leverages the model accuracy of synthesized data to further enhance SemiDFL performance. Through extensive experimentation, we demonstrate the remarkable performance superiority of the proposed DFL-Semi method over existing CFL and DFL schemes in both IID and non-IID SSL scenarios.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

北京阿比特科技有限公司