亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We extend the idea of classical cyclic redundancy check codes to quantum cyclic redundancy check codes. This allows us to construct codes quantum stabiliser codes which can correct burst errors where the burst length attains the quantum Reiger bound. We then consider a certain family of quantum cyclic redundancy check codes for which we present a fast linear time decoding algorithm.

相關內容

We present a polynomial-time quantum algorithm making a single query (in superposition) to a classical oracle, such that for every state $|\psi\rangle$ there exists a choice of oracle that makes the algorithm construct an exponentially close approximation of $|\psi\rangle$. Previous algorithms for this problem either used a linear number of queries and polynomial time [arXiv:1607.05256], or a constant number of queries and polynomially many ancillae but no nontrivial bound on the runtime [arXiv:2111.02999]. As corollaries we do the following: - We simplify the proof that statePSPACE $\subseteq$ stateQIP [arXiv:2108.07192] (a quantum state analogue of PSPACE $\subseteq$ IP) and show that a constant number of rounds of interaction suffices. - We show that QAC$\mathsf{_f^0}$ lower bounds for constructing explicit states would imply breakthrough circuit lower bounds for computing explicit boolean functions. - We prove that every $n$-qubit state can be constructed to within 0.01 error by an $O(2^n/n)$-size circuit over an appropriate finite gate set. More generally we give a size-error tradeoff which, by a counting argument, is optimal for any finite gate set.

We study one generator quasi-cyclic codes and four-circulant codes, which are also quasi-cyclic but have two generators. We state the hull dimensions for both classes of codes in terms of the polynomials in their generating elements. We prove results such as the hull dimension of a four-circulant code is even and one-dimensional hull for double-circulant codes, which are special one generator codes, is not possible when the alphabet size $q$ is congruent to 3 mod 4. We also characterize linear complementary pairs among both classes of codes. Computational results on the code families in consideration are provided as well.

High-dimensional quantum key distribution (QKD) offers secure communication, with secure key rates that surpass those achievable by QKD protocols utilizing two-dimensional encoding. However, existing high-dimensional QKD protocols require additional experimental resources, such as multiport interferometers and multiple detectors, thus raising the cost of practical high-dimensional systems and limiting their use. Here, we present and analyze a novel protocol for arbitrary-dimensional QKD, that requires only the hardware of a standard two-dimensional system. We provide security proofs against individual attacks and coherent attacks, setting an upper and lower bound on the secure key rates. Then, we test the new high-dimensional protocol in a standard two-dimensional QKD system over a 40 km fiber link. The new protocol yields a two-fold enhancement of the secure key rate compared to the standard two-dimensional coherent one-way protocol, without introducing any hardware modifications to the system. This work, therefore, holds great potential to enhance the performance of already deployed time-bin QKD systems through a software update alone. Furthermore, its applications extend across different encoding schemes of QKD qudits.

We introduce the well structured problem as the question of whether a model (here a counter machine) is well structured (here for the usual ordering on integers). We show that it is undecidable for most of the (Presburger-defined) counter machines except for Affine VASS of dimension one. However, the strong well structured problem is decidable for all Presburger counter machines. While Affine VASS of dimension one are not, in general, well structured, we give an algorithm that computes the set of predecessors of a configuration; as a consequence this allows to decide the well structured problem for 1-Affine VASS.

We consider the problem of multi-path entanglement distribution to a pair of nodes in a quantum network consisting of devices with non-deterministic entanglement swapping capabilities. Multi-path entanglement distribution enables a network to establish end-to-end entangled links across any number of available paths with pre-established link-level entanglement. Probabilistic entanglement swapping, on the other hand, limits the amount of entanglement that is shared between the nodes; this is especially the case when, due to architectural and other practical constraints, swaps must be performed in temporal proximity to each other. Limiting our focus to the case where only bipartite entangled states are generated across the network, we cast the problem as an instance of generalized flow maximization between two quantum end nodes wishing to communicate. We propose a mixed-integer quadratically constrained program (MIQCP) to solve this flow problem for networks with arbitrary topology. We then compute the overall network capacity, defined as the maximum number of EPR states distributed to users per time unit, by solving the flow problem for all possible network states generated by probabilistic entangled link presence and absence, and subsequently by averaging over all network state capacities. The MIQCP can also be applied to networks with multiplexed links. While our approach for computing the overall network capacity has the undesirable property that the total number of states grows exponentially with link multiplexing capability, it nevertheless yields an exact solution that serves as an upper bound comparison basis for the throughput performance of easily-implementable yet non-optimal entanglement routing algorithms. We apply our capacity computation method to several networks, including a topology based on SURFnet -- a backbone network used for research purposes in the Netherlands.

Surface code error correction offers a highly promising pathway to achieve scalable fault-tolerant quantum computing. When operated as stabilizer codes, surface code computations consist of a syndrome decoding step where measured stabilizer operators are used to determine appropriate corrections for errors in physical qubits. Decoding algorithms have undergone substantial development, with recent work incorporating machine learning (ML) techniques. Despite promising initial results, the ML-based syndrome decoders are still limited to small scale demonstrations with low latency and are incapable of handling surface codes with boundary conditions and various shapes needed for lattice surgery and braiding. Here, we report the development of an artificial neural network (ANN) based scalable and fast syndrome decoder capable of decoding surface codes of arbitrary shape and size with data qubits suffering from the depolarizing error model. Based on rigorous training over 50 million random quantum error instances, our ANN decoder is shown to work with code distances exceeding 1000 (more than 4 million physical qubits), which is the largest ML-based decoder demonstration to-date. The established ANN decoder demonstrates an execution time in principle independent of code distance, implying that its implementation on dedicated hardware could potentially offer surface code decoding times of O($\mu$sec), commensurate with the experimentally realisable qubit coherence times. With the anticipated scale-up of quantum processors within the next decade, their augmentation with a fast and scalable syndrome decoder such as developed in our work is expected to play a decisive role towards experimental implementation of fault-tolerant quantum information processing.

We revisit the binary adversarial wiretap channel (AWTC) of type II in which an active adversary can read a fraction $r$ and flip a fraction $p$ of codeword bits. The semantic-secrecy capacity of the AWTC II is partially known, where the best-known lower bound is non-constructive, proven via a random coding argument that uses a large number (that is exponential in blocklength $n$) of random bits to seed the random code. In this paper, we establish a new derandomization result in which we match the best-known lower bound of $1-H_2(p)-r$ where $H_2(\cdot)$ is the binary entropy function via a random code that uses a small seed of only $O(n^2)$ bits. Our random code construction is a novel application of pseudolinear codes -- a class of non-linear codes that have $k$-wise independent codewords when picked at random where $k$ is a design parameter. As the key technical tool in our analysis, we provide a soft-covering lemma in the flavor of Goldfeld, Cuff and Permuter (Trans. Inf. Theory 2016) that holds for random codes with $k$-wise independent codewords.

This paper focuses on the problem of coflow scheduling with precedence constraints in identical parallel networks, which is a well-known $\mathcal{NP}$-hard problem. Coflow is a relatively new network abstraction used to characterize communication patterns in data centers. Both flow-level scheduling and coflow-level scheduling problems are examined, with the key distinction being the scheduling granularity. The proposed algorithm effectively determines the scheduling order of coflows by employing the primal-dual method. When considering workload sizes and weights that are dependent on the network topology in the input instances, our proposed algorithm for the flow-level scheduling problem achieves an approximation ratio of $O(\chi)$ where $\chi$ is the coflow number of the longest path in the directed acyclic graph (DAG). Additionally, when taking into account workload sizes that are topology-dependent, the algorithm achieves an approximation ratio of $O(R\chi)$, where $R$ represents the ratio of maximum weight to minimum weight. For the coflow-level scheduling problem, the proposed algorithm achieves an approximation ratio of $O(m\chi)$, where $m$ is the number of network cores, when considering workload sizes and weights that are topology-dependent. Moreover, when considering workload sizes that are topology-dependent, the algorithm achieves an approximation ratio of $O(Rm\chi)$. In the coflows of multi-stage job scheduling problem, the proposed algorithm achieves an approximation ratio of $O(\chi)$. Although our theoretical results are based on a limited set of input instances, experimental findings show that the results for general input instances outperform the theoretical results, thereby demonstrating the effectiveness and practicality of the proposed algorithm.

Variational quantum algorithms (VQAs) prevail to solve practical problems such as combinatorial optimization, quantum chemistry simulation, quantum machine learning, and quantum error correction on noisy quantum computers. For variational quantum machine learning, a variational algorithm with model interpretability built into the algorithm is yet to be exploited. In this paper, we construct a quantum regression algorithm and identify the direct relation of variational parameters to learned regression coefficients, while employing a circuit that directly encodes the data in quantum amplitudes reflecting the structure of the classical data table. The algorithm is particularly suitable for well-connected qubits. With compressed encoding and digital-analog gate operation, the run time complexity is logarithmically more advantageous than that for digital 2-local gate native hardware with the number of data entries encoded, a decent improvement in noisy intermediate-scale quantum computers and a minor improvement for large-scale quantum computing Our suggested method of compressed binary encoding offers a remarkable reduction in the number of physical qubits needed when compared to the traditional one-hot-encoding technique with the same input data. The algorithm inherently performs linear regression but can also be used easily for nonlinear regression by building nonlinear features into the training data. In terms of measured cost function which distinguishes a good model from a poor one for model training, it will be effective only when the number of features is much less than the number of records for the encoded data structure to be observable. To echo this finding and mitigate hardware noise in practice, the ensemble model training from the quantum regression model learning with important feature selection from regularization is incorporated and illustrated numerically.

For quantum error-correcting codes to be realizable, it is important that the qubits subject to the code constraints exhibit some form of limited connectivity. The works of Bravyi & Terhal (BT) and Bravyi, Poulin & Terhal (BPT) established that geometric locality constrains code properties -- for instance $[[n,k,d]]$ quantum codes defined by local checks on the $D$-dimensional lattice must obey $k d^{2/(D-1)} \le O(n)$. Baspin and Krishna studied the more general question of how the connectivity graph associated with a quantum code constrains the code parameters. These trade-offs apply to a richer class of codes compared to the BPT and BT bounds, which only capture geometrically-local codes. We extend and improve this work, establishing a tighter dimension-distance trade-off as a function of the size of separators in the connectivity graph. We also obtain a distance bound that covers all stabilizer codes with a particular separation profile, rather than only LDPC codes.

北京阿比特科技有限公司