亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper addresses the task of semantic segmentation in computer vision, aiming to achieve precise pixel-wise classification. We investigate the joint training of models for semantic edge detection and semantic segmentation, which has shown promise. However, implicit cross-task consistency learning in multi-task networks is limited. To address this, we propose a novel "decoupled cross-task consistency loss" that explicitly enhances cross-task consistency. Our semantic segmentation network, TriangleNet, achieves a substantial 2.88\% improvement over the Baseline in mean Intersection over Union (mIoU) on the Cityscapes test set. Notably, TriangleNet operates at 77.4\% mIoU/46.2 FPS on Cityscapes, showcasing real-time inference capabilities at full resolution. With multi-scale inference, performance is further enhanced to 77.8\%. Furthermore, TriangleNet consistently outperforms the Baseline on the FloodNet dataset, demonstrating its robust generalization capabilities. The proposed method underscores the significance of multi-task learning and explicit cross-task consistency enhancement for advancing semantic segmentation and highlights the potential of multitasking in real-time semantic segmentation.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網絡會議(yi)。 Publisher:IFIP。 SIT:

This paper introduces a new benchmark dataset, Open-Structure, for evaluating visual odometry and SLAM methods, which directly equips point and line measurements, correspondences, structural associations, and co-visibility factor graphs instead of providing raw images. Based on the proposed benchmark dataset, these 2D or 3D data can be directly input to different stages of SLAM pipelines to avoid the impact of the data preprocessing modules in ablation experiments. First, we propose a dataset generator for real-world and simulated scenarios. In real-world scenes, it maintains the same observations and occlusions as actual feature extraction results. Those generated simulation sequences enhance the dataset's diversity by introducing various carefully designed trajectories and observations. Second, a SLAM baseline is proposed using our dataset to evaluate widely used modules in camera pose tracking, parametrization, and optimization modules. By evaluating these state-of-the-art algorithms across different scenarios, we discern each module's strengths and weaknesses within the camera tracking and optimization process. Our dataset and baseline are available at \url{//github.com/yanyan-li/Open-Structure}.

Automatically recognising apparent emotions from face and voice is hard, in part because of various sources of uncertainty, including in the input data and the labels used in a machine learning framework. This paper introduces an uncertainty-aware audiovisual fusion approach that quantifies modality-wise uncertainty towards emotion prediction. To this end, we propose a novel fusion framework in which we first learn latent distributions over audiovisual temporal context vectors separately, and then constrain the variance vectors of unimodal latent distributions so that they represent the amount of information each modality provides w.r.t. emotion recognition. In particular, we impose Calibration and Ordinal Ranking constraints on the variance vectors of audiovisual latent distributions. When well-calibrated, modality-wise uncertainty scores indicate how much their corresponding predictions may differ from the ground truth labels. Well-ranked uncertainty scores allow the ordinal ranking of different frames across the modalities. To jointly impose both these constraints, we propose a softmax distributional matching loss. In both classification and regression settings, we compare our uncertainty-aware fusion model with standard model-agnostic fusion baselines. Our evaluation on two emotion recognition corpora, AVEC 2019 CES and IEMOCAP, shows that audiovisual emotion recognition can considerably benefit from well-calibrated and well-ranked latent uncertainty measures.

We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at //github.com/yuweihao/MM-Vet.

Recently, learned image compression has achieved remarkable performance. The entropy model, which estimates the distribution of the latent representation, plays a crucial role in boosting rate-distortion performance. However, most entropy models only capture correlations in one dimension, while the latent representation contain channel-wise, local spatial, and global spatial correlations. To tackle this issue, we propose the Multi-Reference Entropy Model (MEM) and the advanced version, MEM$^+$. These models capture the different types of correlations present in latent representation. Specifically, We first divide the latent representation into slices. When decoding the current slice, we use previously decoded slices as context and employ the attention map of the previously decoded slice to predict global correlations in the current slice. To capture local contexts, we introduce two enhanced checkerboard context capturing techniques that avoids performance degradation. Based on MEM and MEM$^+$, we propose image compression models MLIC and MLIC$^+$. Extensive experimental evaluations demonstrate that our MLIC and MLIC$^+$ models achieve state-of-the-art performance, reducing BD-rate by $8.05\%$ and $11.39\%$ on the Kodak dataset compared to VTM-17.0 when measured in PSNR. Our code will be available at //github.com/JiangWeibeta/MLIC.

Light plays an important role in human well-being. However, most computer vision tasks treat pixels without considering their relationship to physical luminance. To address this shortcoming, we introduce the Laval Photometric Indoor HDR Dataset, the first large-scale photometrically calibrated dataset of high dynamic range 360{\deg} panoramas. Our key contribution is the calibration of an existing, uncalibrated HDR Dataset. We do so by accurately capturing RAW bracketed exposures simultaneously with a professional photometric measurement device (chroma meter) for multiple scenes across a variety of lighting conditions. Using the resulting measurements, we establish the calibration coefficients to be applied to the HDR images. The resulting dataset is a rich representation of indoor scenes which displays a wide range of illuminance and color, and varied types of light sources. We exploit the dataset to introduce three novel tasks, where: per-pixel luminance, per-pixel color and planar illuminance can be predicted from a single input image. Finally, we also capture another smaller photometric dataset with a commercial 360{\deg} camera, to experiment on generalization across cameras. We are optimistic that the release of our datasets and associated code will spark interest in physically accurate light estimation within the community. Dataset and code are available at //lvsn.github.io/beyondthepixel/.

This paper considers a cell-free massive multipleinput multiple-output (MIMO) integrated sensing and communication (ISAC) system, where distributed MIMO access points (APs) are used to jointly serve the communication users and detect the presence of a single target. We investigate the problem of AP operation mode selection, wherein some APs are dedicated for downlink communication, while the remaining APs are used for sensing purposes. Closed-form expressions for the individual spectral efficiency (SE) and mainlobe-to-average-sidelobe ratio (MASR) are derived, which are respectively utilized to assess the communication and sensing performances. Accordingly, a maxmin fairness problem is formulated and solved, where the minimum SE of the users is maximized, subject to the per-AP power constraints as well as sensing MASR constraint. Our numerical results show that the proposed AP operation mode selection with power control can significantly improve the communication performance for given sensing requirements.

Visual instruction tuning large language model(LLM) on image-text pairs has achieved general-purpose vision-language abilities. However, the lack of region-text pairs limits their advancements to fine-grained multimodal understanding. In this paper, we propose spatial instruction tuning, which introduces the reference to the region-of-interest(RoI) in the instruction. Before sending to LLM, the reference is replaced by RoI features and interleaved with language embeddings as a sequence. Our model GPT4RoI, trained on 7 region-text pair datasets, brings an unprecedented interactive and conversational experience compared to previous image-level models. (1) Interaction beyond language: Users can interact with our model by both language and drawing bounding boxes to flexibly adjust the referring granularity. (2) Versatile multimodal abilities: A variety of attribute information within each RoI can be mined by GPT4RoI, e.g., color, shape, material, action, etc. Furthermore, it can reason about multiple RoIs based on common sense. On the Visual Commonsense Reasoning(VCR) dataset, GPT4RoI achieves a remarkable accuracy of 81.6%, surpassing all existing models by a significant margin (the second place is 75.6%) and almost reaching human-level performance of 85.0%. The code, dataset, and demo can be found at //github.com/jshilong/GPT4RoI.

Resistive random access memory (ReRAM) is a promising technology that can perform low-cost and in-situ matrix-vector multiplication (MVM) in analog domain. Scientific computing requires high-precision floating-point (FP) processing. However, performing floating-point computation in ReRAM is challenging because of high hardware cost and execution time due to the large FP value range. In this work we present ReFloat, a data format and an accelerator architecture, for low-cost and high-performance floating-point processing in ReRAM for iterative linear solvers. ReFloat matches the ReRAM crossbar hardware and represents a block of FP values with reduced bits and an optimized exponent base for a high range of dynamic representation. Thus, ReFloat achieves less ReRAM crossbar consumption and fewer processing cycles and overcomes the noncovergence issue in a prior work. The evaluation on the SuiteSparse matrices shows ReFloat achieves 5.02x to 84.28x improvement in terms of solver time compared to a state-of-the-art ReRAM based accelerator.

This paper introduces a new fundamental characteristic, \ie, the dynamic range, from real-world metric tools to deep visual recognition. In metrology, the dynamic range is a basic quality of a metric tool, indicating its flexibility to accommodate various scales. Larger dynamic range offers higher flexibility. In visual recognition, the multiple scale problem also exist. Different visual concepts may have different semantic scales. For example, ``Animal'' and ``Plants'' have a large semantic scale while ``Elk'' has a much smaller one. Under a small semantic scale, two different elks may look quite \emph{different} to each other . However, under a large semantic scale (\eg, animals and plants), these two elks should be measured as being \emph{similar}. %We argue that such flexibility is also important for deep metric learning, because different visual concepts indeed correspond to different semantic scales. Introducing the dynamic range to deep metric learning, we get a novel computer vision task, \ie, the Dynamic Metric Learning. It aims to learn a scalable metric space to accommodate visual concepts across multiple semantic scales. Based on three types of images, \emph{i.e.}, vehicle, animal and online products, we construct three datasets for Dynamic Metric Learning. We benchmark these datasets with popular deep metric learning methods and find Dynamic Metric Learning to be very challenging. The major difficulty lies in a conflict between different scales: the discriminative ability under a small scale usually compromises the discriminative ability under a large one, and vice versa. As a minor contribution, we propose Cross-Scale Learning (CSL) to alleviate such conflict. We show that CSL consistently improves the baseline on all the three datasets. The datasets and the code will be publicly available at //github.com/SupetZYK/DynamicMetricLearning.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

北京阿比特科技有限公司