In this research paper, we address the Distinct Elements estimation problem in the context of streaming algorithms. The problem involves estimating the number of distinct elements in a given data stream $\mathcal{A} = (a_1, a_2,\ldots, a_m)$, where $a_i \in \{1, 2, \ldots, n\}$. Over the past four decades, the Distinct Elements problem has received considerable attention, theoretically and empirically, leading to the development of space-optimal algorithms. A recent sampling-based algorithm proposed by Chakraborty et al.[11] has garnered significant interest and has even attracted the attention of renowned computer scientist Donald E. Knuth, who wrote an article on the same topic [6] and called the algorithm CVM. In this paper, we thoroughly examine the algorithms (referred to as CVM1, CVM2 in [6] and DonD, DonD' in [6]. We first unify all these algorithms and call them cutoff-based algorithms. Then we provide an approximation and biasedness analysis of these algorithms.
We are interested in numerically solving a transitional model derived from the Bloch model. The Bloch equation describes the time evolution of the density matrix of a quantum system forced by an electromagnetic wave. In a high frequency and low amplitude regime, it asymptotically reduces to a non-stiff rate equation. As a middle ground, the transitional model governs the diagonal part of the density matrix. It fits in a general setting of linear problems with a high-frequency quasi-periodic forcing and an exponentially decaying forcing. The numerical resolution of such problems is challenging. Adapting high-order averaging techniques to this setting, we separate the slow (rate) dynamics from the fast (oscillatory and decay) dynamics to derive a new micro-macro problem. We derive estimates for the size of the micro part of the decomposition, and of its time derivatives, showing that this new problem is non-stiff. As such, we may solve this micro-macro problem with uniform accuracy using standard numerical schemes. To validate this approach, we present numerical results first on a toy problem and then on the transitional Bloch model.
Given a basic block of instructions, finding a schedule that requires the minimum number of registers for evaluation is a well-known problem. The problem is NP-complete when the dependences among instructions form a directed-acyclic graph instead of a tree. We are striving to find efficient approximation algorithms for this problem not simply because it is an interesting graph optimization problem in theory. A good solution to this problem is also an essential component in solving the more complex instruction scheduling problem on GPU. In this paper, we start with explanations on why this problem is important in GPU instruction scheduling. We then explore two different approaches to tackling this problem. First we model this problem as a constraint-programming problem. Using a state-of-the-art CP-SAT solver, we can find optimal answers for much larger cases than previous works on a modest desktop PC. Second, guided by the optimal answers, we design and evaluate heuristics that can be applied to the polynomial-time list scheduling algorithms. A combination of those heuristics can achieve the register-pressure results that are about 17\% higher than the optimal minimum on average. However, there are still near 6\% cases in which the register pressure by the heuristic approach is 50\% higher than the optimal minimum.
The emerging theory of graph limits exhibits an analytic perspective on graphs, showing that many important concepts and tools in graph theory and its applications can be described more naturally (and sometimes proved more easily) in analytic language. We extend the theory of graph limits to the ordered setting, presenting a limit object for dense vertex-ordered graphs, which we call an orderon. As a special case, this yields limit objects for matrices whose rows and columns are ordered, and for dynamic graphs that expand (via vertex insertions) over time. Along the way, we devise an ordered locality-preserving variant of the cut distance between ordered graphs, showing that two graphs are close with respect to this distance if and only if they are similar in terms of their ordered subgraph frequencies. We show that the space of orderons is compact with respect to this distance notion, which is key to a successful analysis of combinatorial objects through their limits. We derive several applications of the ordered limit theory in extremal combinatorics, sampling, and property testing in ordered graphs. In particular, we prove a new ordered analogue of the well-known result by Alon and Stav [RS\&A'08] on the furthest graph from a hereditary property; this is the first known result of this type in the ordered setting. Unlike the unordered regime, here the random graph model $G(n, p)$ with an ordering over the vertices is not always asymptotically the furthest from the property for some $p$. However, using our ordered limit theory, we show that random graphs generated by a stochastic block model, where the blocks are consecutive in the vertex ordering, are (approximately) the furthest. Additionally, we describe an alternative analytic proof of the ordered graph removal lemma [Alon et al., FOCS'17].
Stabbing Planes (also known as Branch and Cut) is a proof system introduced very recently which, informally speaking, extends the DPLL method by branching on integer linear inequalities instead of single variables. The techniques known so far to prove size and depth lower bounds for Stabbing Planes are generalizations of those used for the Cutting Planes proof system. For size lower bounds these are established by monotone circuit arguments, while for depth these are found via communication complexity and protection. As such these bounds apply for lifted versions of combinatorial statements. Rank lower bounds for Cutting Planes are also obtained by geometric arguments called protection lemmas. In this work we introduce two new geometric approaches to prove size/depth lower bounds in Stabbing Planes working for any formula: (1) the antichain method, relying on Sperner's Theorem and (2) the covering method which uses results on essential coverings of the boolean cube by linear polynomials, which in turn relies on Alon's combinatorial Nullenstellensatz. We demonstrate their use on classes of combinatorial principles such as the Pigeonhole principle, the Tseitin contradictions and the Linear Ordering Principle. By the first method we prove almost linear size lower bounds and optimal logarithmic depth lower bounds for the Pigeonhole principle and analogous lower bounds for the Tseitin contradictions over the complete graph and for the Linear Ordering Principle. By the covering method we obtain a superlinear size lower bound and a logarithmic depth lower bound for Stabbing Planes proof of Tseitin contradictions over a grid graph.
Practitioners in diverse fields such as healthcare, economics and education are eager to apply machine learning to improve decision making. The cost and impracticality of performing experiments and a recent monumental increase in electronic record keeping has brought attention to the problem of evaluating decisions based on non-experimental observational data. This is the setting of this work. In particular, we study estimation of individual-level causal effects, such as a single patient's response to alternative medication, from recorded contexts, decisions and outcomes. We give generalization bounds on the error in estimated effects based on distance measures between groups receiving different treatments, allowing for sample re-weighting. We provide conditions under which our bound is tight and show how it relates to results for unsupervised domain adaptation. Led by our theoretical results, we devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance, and encourage sharing of information between treatment groups. We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances. Finally, an experimental evaluation on real and synthetic data shows the value of our proposed representation architecture and regularization scheme.
BIQA (Blind Image Quality Assessment) is an important field of study that evaluates images automatically. Although significant progress has been made, blind image quality assessment remains a difficult task since images vary in content and distortions. Most algorithms generate quality without emphasizing the important region of interest. In order to solve this, a multi-stream spatial and channel attention-based algorithm is being proposed. This algorithm generates more accurate predictions with a high correlation to human perceptual assessment by combining hybrid features from two different backbones, followed by spatial and channel attention to provide high weights to the region of interest. Four legacy image quality assessment datasets are used to validate the effectiveness of our proposed approach. Authentic and synthetic distortion image databases are used to demonstrate the effectiveness of the proposed method, and we show that it has excellent generalization properties with a particular focus on the perceptual foreground information.
In a decentralized machine learning system, data is typically partitioned among multiple devices or nodes, each of which trains a local model using its own data. These local models are then shared and combined to create a global model that can make accurate predictions on new data. In this paper, we start exploring the role of the network topology connecting nodes on the performance of a Machine Learning model trained through direct collaboration between nodes. We investigate how different types of topologies impact the "spreading of knowledge", i.e., the ability of nodes to incorporate in their local model the knowledge derived by learning patterns in data available in other nodes across the networks. Specifically, we highlight the different roles in this process of more or less connected nodes (hubs and leaves), as well as that of macroscopic network properties (primarily, degree distribution and modularity). Among others, we show that, while it is known that even weak connectivity among network components is sufficient for information spread, it may not be sufficient for knowledge spread. More intuitively, we also find that hubs have a more significant role than leaves in spreading knowledge, although this manifests itself not only for heavy-tailed distributions but also when "hubs" have only moderately more connections than leaves. Finally, we show that tightly knit communities severely hinder knowledge spread.
Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.
Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.