Considering the field of functional data analysis, we developed a new Bayesian method for variable selection in function-on-scalar regression (FOSR). Our approach uses latent variables, allowing an adaptive selection since it can determine the number of variables and which ones should be selected for a function-on-scalar regression model. Simulation studies show the proposed method's main properties, such as its accuracy in estimating the coefficients and high capacity to select variables correctly. Furthermore, we conducted comparative studies with the main competing methods, such as the BGLSS method as well as the group LASSO, the group MCP and the group SCAD. We also used a COVID-19 dataset and some socioeconomic data from Brazil for real data application. In short, the proposed Bayesian variable selection model is extremely competitive, showing significant predictive and selective quality.
We introduce a generalized additive model for location, scale, and shape (GAMLSS) next of kin aiming at distribution-free and parsimonious regression modelling for arbitrary outcomes. We replace the strict parametric distribution formulating such a model by a transformation function, which in turn is estimated from data. Doing so not only makes the model distribution-free but also allows to limit the number of linear or smooth model terms to a pair of location-scale predictor functions. We derive the likelihood for continuous, discrete, and randomly censored observations, along with corresponding score functions. A plethora of existing algorithms is leveraged for model estimation, including constrained maximum-likelihood, the original GAMLSS algorithm, and transformation trees. Parameter interpretability in the resulting models is closely connected to model selection. We propose the application of a novel best subset selection procedure to achieve especially simple ways of interpretation. All techniques are motivated and illustrated by a collection of applications from different domains, including crossing and partial proportional hazards, complex count regression, non-linear ordinal regression, and growth curves. All analyses are reproducible with the help of the "tram" add-on package to the R system for statistical computing and graphics.
3D shape reconstruction typically requires identifying object features or textures in multiple images of a subject. This approach is not viable when the subject is semi-transparent and moving in and out of focus. Here we overcome these challenges by rendering a candidate shape with adaptive blurring and transparency for comparison with the images. We use the microscopic nematode Caenorhabditis elegans as a case study as it freely explores a 3D complex fluid with constantly changing optical properties. We model the slender worm as a 3D curve using an intrinsic parametrisation that naturally admits biologically-informed constraints and regularisation. To account for the changing optics we develop a novel differentiable renderer to construct images from 2D projections and compare against raw images to generate a pixel-wise error to jointly update the curve, camera and renderer parameters using gradient descent. The method is robust to interference such as bubbles and dirt trapped in the fluid, stays consistent through complex sequences of postures, recovers reliable estimates from blurry images and provides a significant improvement on previous attempts to track C. elegans in 3D. Our results demonstrate the potential of direct approaches to shape estimation in complex physical environments in the absence of ground-truth data.
Sparse principal component analysis (SPCA) is widely used for dimensionality reduction and feature extraction in high-dimensional data analysis. Despite many methodological and theoretical developments in the past two decades, the theoretical guarantees of the popular SPCA algorithm proposed by Zou, Hastie & Tibshirani (2006) are still unknown. This paper aims to address this critical gap. We first revisit the SPCA algorithm of Zou et al. (2006) and present our implementation. We also study a computationally more efficient variant of the SPCA algorithm in Zou et al. (2006) that can be considered as the limiting case of SPCA. We provide the guarantees of convergence to a stationary point for both algorithms and prove that, under a sparse spiked covariance model, both algorithms can recover the principal subspace consistently under mild regularity conditions. We show that their estimation error bounds match the best available bounds of existing works or the minimax rates up to some logarithmic factors. Moreover, we demonstrate the competitive numerical performance of both algorithms in numerical studies.
Understanding epistasis (genetic interaction) may shed some light on the genomic basis of common diseases, including disorders of maximum interest due to their high socioeconomic burden, like schizophrenia. Distance correlation is an association measure that characterises general statistical independence between random variables, not only the linear one. Here, we propose distance correlation as a novel tool for the detection of epistasis from case-control data of single-nucleotide polymorphisms (SNPs). On the methodological side, we highlight the derivation of the explicit asymptotic distribution of the test statistic. We show that this is the only way to obtain enough computational speed for the method to be used in practice, in a scenario where the resampling techniques found in the literature are impractical. Our simulations show satisfactory calibration of significance, as well as comparable or better power than existing methodology. We conclude with the application of our technique to a schizophrenia genetics dataset, obtaining biologically sound insights.
Modern datasets often exhibit high dimensionality, yet the data reside in low-dimensional manifolds that can reveal underlying geometric structures critical for data analysis. A prime example of such a dataset is a collection of cell cycle measurements, where the inherently cyclical nature of the process can be represented as a circle or sphere. Motivated by the need to analyze these types of datasets, we propose a nonlinear dimension reduction method, Spherical Rotation Component Analysis (SRCA), that incorporates geometric information to better approximate low-dimensional manifolds. SRCA is a versatile method designed to work in both high-dimensional and small sample size settings. By employing spheres or ellipsoids, SRCA provides a low-rank spherical representation of the data with general theoretic guarantees, effectively retaining the geometric structure of the dataset during dimensionality reduction. A comprehensive simulation study, along with a successful application to human cell cycle data, further highlights the advantages of SRCA compared to state-of-the-art alternatives, demonstrating its superior performance in approximating the manifold while preserving inherent geometric structures.
We consider the problem of online interval scheduling on a single machine, where intervals arrive online in an order chosen by an adversary, and the algorithm must output a set of non-conflicting intervals. Traditionally in scheduling theory, it is assumed that intervals arrive in order of increasing start times. We drop that assumption and allow for intervals to arrive in any possible order. We call this variant any-order interval selection (AOIS). We assume that some online acceptances can be revoked, but a feasible solution must always be maintained. For unweighted intervals and deterministic algorithms, this problem is unbounded. Under the assumption that there are at most $k$ different interval lengths, we give a simple algorithm that achieves a competitive ratio of $2k$ and show that it is optimal amongst deterministic algorithms, and a restricted class of randomized algorithms we call memoryless, contributing to an open question by Adler and Azar 2003; namely whether a randomized algorithm without access to history can achieve a constant competitive ratio. We connect our model to the problem of call control on the line, and show how the algorithms of Garay et al. 1997 can be applied to our setting, resulting in an optimal algorithm for the case of proportional weights. We also discuss the case of intervals with arbitrary weights, and show how to convert the single-length algorithm of Fung et al. 2014 into a classify and randomly select algorithm that achieves a competitive ratio of 2k. Finally, we consider the case of intervals arriving in a random order, and show that for single-lengthed instances, a one-directional algorithm (i.e. replacing intervals in one direction), is the only deterministic memoryless algorithm that can possibly benefit from random arrivals. Finally, we briefly discuss the case of intervals with arbitrary weights.
This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed, proper, convex function. Extending first-order methods for multiobjective problems without scalarization has been widely studied, but providing accelerated methods with accurate proofs of convergence rates remains an open problem. Our proposed method is a multiobjective generalization of the accelerated proximal gradient method, also known as the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), for scalar optimization. The key to this successful extension is solving a subproblem with terms exclusive to the multiobjective case. This approach allows us to demonstrate the global convergence rate of the proposed method ($O(1 / k^2)$), using a merit function to measure the complexity. Furthermore, we present an efficient way to solve the subproblem via its dual representation, and we confirm the validity of the proposed method through some numerical experiments.
We propose a novel nonparametric regression framework subject to the positive definiteness constraint. It offers a highly modular approach for estimating covariance functions of stationary processes. Our method can impose positive definiteness, as well as isotropy and monotonicity, on the estimators, and its hyperparameters can be decided using cross validation. We define our estimators by taking integral transforms of kernel-based distribution surrogates. We then use the iterated density estimation evolutionary algorithm, a variant of estimation of distribution algorithms, to fit the estimators. We also extend our method to estimate covariance functions for point-referenced data. Compared to alternative approaches, our method provides more reliable estimates for long-range dependence. Several numerical studies are performed to demonstrate the efficacy and performance of our method. Also, we illustrate our method using precipitation data from the Spatial Interpolation Comparison 97 project.
GAN inversion aims to invert a given image back into the latent space of a pretrained GAN model, for the image to be faithfully reconstructed from the inverted code by the generator. As an emerging technique to bridge the real and fake image domains, GAN inversion plays an essential role in enabling the pretrained GAN models such as StyleGAN and BigGAN to be used for real image editing applications. Meanwhile, GAN inversion also provides insights on the interpretation of GAN's latent space and how the realistic images can be generated. In this paper, we provide an overview of GAN inversion with a focus on its recent algorithms and applications. We cover important techniques of GAN inversion and their applications to image restoration and image manipulation. We further elaborate on some trends and challenges for future directions.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.