亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Together with impressive advances touching every aspect of our society, AI technology based on Deep Neural Networks (DNN) is bringing increasing security concerns. While attacks operating at test time have monopolised the initial attention of researchers, backdoor attacks, exploiting the possibility of corrupting DNN models by interfering with the training process, represents a further serious threat undermining the dependability of AI techniques. In a backdoor attack, the attacker corrupts the training data so to induce an erroneous behaviour at test time. Test time errors, however, are activated only in the presence of a triggering event corresponding to a properly crafted input sample. In this way, the corrupted network continues to work as expected for regular inputs, and the malicious behaviour occurs only when the attacker decides to activate the backdoor hidden within the network. In the last few years, backdoor attacks have been the subject of an intense research activity focusing on both the development of new classes of attacks, and the proposal of possible countermeasures. The goal of this overview paper is to review the works published until now, classifying the different types of attacks and defences proposed so far. The classification guiding the analysis is based on the amount of control that the attacker has on the training process, and the capability of the defender to verify the integrity of the data used for training, and to monitor the operations of the DNN at training and test time. As such, the proposed analysis is particularly suited to highlight the strengths and weaknesses of both attacks and defences with reference to the application scenarios they are operating in.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Federated learning is a machine learning paradigm that emerges as a solution to the privacy-preservation demands in artificial intelligence. As machine learning, federated learning is threatened by adversarial attacks against the integrity of the learning model and the privacy of data via a distributed approach to tackle local and global learning. This weak point is exacerbated by the inaccessibility of data in federated learning, which makes harder the protection against adversarial attacks and evidences the need to furtherance the research on defence methods to make federated learning a real solution for safeguarding data privacy. In this paper, we present an extensive review of the threats of federated learning, as well as as their corresponding countermeasures, attacks versus defences. This survey provides a taxonomy of adversarial attacks and a taxonomy of defence methods that depict a general picture of this vulnerability of federated learning and how to overcome it. Likewise, we expound guidelines for selecting the most adequate defence method according to the category of the adversarial attack. Besides, we carry out an extensive experimental study from which we draw further conclusions about the behaviour of attacks and defences and the guidelines for selecting the most adequate defence method according to the category of the adversarial attack. This study is finished leading to meditated learned lessons and challenges.

The recent advancements in machine learning have led to a wave of interest in adopting online learning-based approaches for long-standing attack mitigation issues. In particular, DDoS attacks remain a significant threat to network service availability even after more than two decades. These attacks have been well studied under the assumption that malicious traffic originates from a single attack profile. Based on this premise, malicious traffic characteristics are assumed to be considerably different from legitimate traffic. Consequently, online filtering methods are designed to learn network traffic distributions adaptively and rank requests according to their attack likelihood. During an attack, requests rated as malicious are precipitously dropped by the filters. In this paper, we conduct the first systematic study on the effects of data poisoning attacks on online DDoS filtering; introduce one such attack method, and propose practical protective countermeasures for these attacks. We investigate an adverse scenario where the attacker is "crafty", switching profiles during attacks and generating erratic attack traffic that is ever-shifting. This elusive attacker generates malicious requests by manipulating and shifting traffic distribution to poison the training data and corrupt the filters. To this end, we present a generative model MimicShift, capable of controlling traffic generation while retaining the originating traffic's intrinsic properties. Comprehensive experiments show that online learning filters are highly susceptible to poisoning attacks, sometimes performing much worse than a random filtering strategy in this attack scenario. At the same time, our proposed protective countermeasure diminishes the attack impact.

If devices are physically accessible optical fault injection attacks pose a great threat since the data processed as well as the operation flow can be manipulated. Successful physical attacks may lead not only to leakage of secret information such as cryptographic private keys, but can also cause economic damage especially if as a result of such a manipulation a critical infrastructure is successfully attacked. Laser based attacks exploit the sensitivity of CMOS technologies to electromagnetic radiation in the visible or the infrared spectrum. It can be expected that radiation-hard designs, specially crafted for space applications, are more robust not only against high-energy particles and short electromagnetic waves but also against optical fault injection attacks. In this work we investigated the sensitivity of radiation-hard JICG shift registers to optical fault injection attacks. In our experiments, we were able to trigger bit-set and bit-reset repeatedly changing the data stored in single JICG flip-flops despite their high-radiation fault tolerance.

Deep generative models have gained much attention given their ability to generate data for applications as varied as healthcare to financial technology to surveillance, and many more - the most popular models being generative adversarial networks and variational auto-encoders. Yet, as with all machine learning models, ever is the concern over security breaches and privacy leaks and deep generative models are no exception. These models have advanced so rapidly in recent years that work on their security is still in its infancy. In an attempt to audit the current and future threats against these models, and to provide a roadmap for defense preparations in the short term, we prepared this comprehensive and specialized survey on the security and privacy preservation of GANs and VAEs. Our focus is on the inner connection between attacks and model architectures and, more specifically, on five components of deep generative models: the training data, the latent code, the generators/decoders of GANs/ VAEs, the discriminators/encoders of GANs/ VAEs, and the generated data. For each model, component and attack, we review the current research progress and identify the key challenges. The paper concludes with a discussion of possible future attacks and research directions in the field.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

Deep neural networks (DNNs) are known vulnerable to backdoor attacks, a training time attack that injects a trigger pattern into a small proportion of training data so as to control the model's prediction at the test time. Backdoor attacks are notably dangerous since they do not affect the model's performance on clean examples, yet can fool the model to make incorrect prediction whenever the trigger pattern appears during testing. In this paper, we propose a novel defense framework Neural Attention Distillation (NAD) to erase backdoor triggers from backdoored DNNs. NAD utilizes a teacher network to guide the finetuning of the backdoored student network on a small clean subset of data such that the intermediate-layer attention of the student network aligns with that of the teacher network. The teacher network can be obtained by an independent finetuning process on the same clean subset. We empirically show, against 6 state-of-the-art backdoor attacks, NAD can effectively erase the backdoor triggers using only 5\% clean training data without causing obvious performance degradation on clean examples. Code is available in //github.com/bboylyg/NAD.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Backdoor attack could happen when the training process is not fully controlled by the user, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, its systematic review, however, remains blank. In this paper, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and the relevant fields ($i.e.,$ adversarial attack and data poisoning), and summarize the benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works.

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

Graph neural networks (GNNs) are widely used in many applications. However, their robustness against adversarial attacks is criticized. Prior studies show that using unnoticeable modifications on graph topology or nodal features can significantly reduce the performances of GNNs. It is very challenging to design robust graph neural networks against poisoning attack and several efforts have been taken. Existing work aims at reducing the negative impact from adversarial edges only with the poisoned graph, which is sub-optimal since they fail to discriminate adversarial edges from normal ones. On the other hand, clean graphs from similar domains as the target poisoned graph are usually available in the real world. By perturbing these clean graphs, we create supervised knowledge to train the ability to detect adversarial edges so that the robustness of GNNs is elevated. However, such potential for clean graphs is neglected by existing work. To this end, we investigate a novel problem of improving the robustness of GNNs against poisoning attacks by exploring clean graphs. Specifically, we propose PA-GNN, which relies on a penalized aggregation mechanism that directly restrict the negative impact of adversarial edges by assigning them lower attention coefficients. To optimize PA-GNN for a poisoned graph, we design a meta-optimization algorithm that trains PA-GNN to penalize perturbations using clean graphs and their adversarial counterparts, and transfers such ability to improve the robustness of PA-GNN on the poisoned graph. Experimental results on four real-world datasets demonstrate the robustness of PA-GNN against poisoning attacks on graphs.

北京阿比特科技有限公司