亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The nonlinear Schr{\"o}dinger and the Schr{\"o}dinger-Newton equations model many phenomena in various fields. Here, we perform an extensive numerical comparison between splitting methods (often employed to numerically solve these equations) and the integrating factor technique, also called Lawson method. Indeed, the latter is known to perform very well for the nonlinear Schr{\"o}dinger equation, but has not been thoroughly investigated for the Schr{\"o}dinger-Newton equation. Comparisons are made in one and two spatial dimensions, exploring different boundary conditions and parameters values. We show that for the short range potential of the nonlinear Schr{\"o}dinger equation, the integrating factor technique performs better than splitting algorithms, while, for the long range potential of the Schr{\"o}dinger-Newton equation, it depends on the particular system considered.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

In a completely randomized experiment, the variances of treatment effect estimators in the finite population are usually not identifiable and hence not estimable. Although some estimable bounds of the variances have been established in the literature, few of them are derived in the presence of covariates. In this paper, the difference-in-means estimator and the Wald estimator are considered in the completely randomized experiment with perfect compliance and noncompliance, respectively. Sharp bounds for the variances of these two estimators are established when covariates are available. Furthermore, consistent estimators for such bounds are obtained, which can be used to shorten the confidence intervals and improve the power of tests. Confidence intervals are constructed based on the consistent estimators of the upper bounds, whose coverage rates are uniformly asymptotically guaranteed. Simulations were conducted to evaluate the proposed methods. The proposed methods are also illustrated with two real data analyses.

We investigate time complexities of finite difference methods for solving the high-dimensional linear heat equation, the high-dimensional linear hyperbolic equation and the multiscale hyperbolic heat system with quantum algorithms (hence referred to as the "quantum difference methods"). For the heat and linear hyperbolic equations we study the impact of explicit and implicit time discretizations on quantum advantages over the classical difference method. For the multiscale problem, we find the time complexity of both the classical treatment and quantum treatment for the explicit scheme scales as $\mathcal{O}(1/\varepsilon)$, where $\varepsilon$ is the scaling parameter, while the scaling for the multiscale Asymptotic-Preserving (AP) schemes does not depend on $\varepsilon$. This indicates that it is still of great importance to develop AP schemes for multiscale problems in quantum computing.

Within the last years pressure robust methods for the discretization of incompressible fluids have been developed. These methods allow the use of standard finite elements for the solution of the problem while simultaneously removing a spurious pressure influence in the approximation error of the velocity of the fluid, or the displacement of an incompressible solid. To this end, reconstruction operators are utilized mapping discretely divergence free functions to divergence free functions. This work shows that the modifications proposed for Stokes equation by Linke (2014) also yield gradient robust methods for nearly incompressible elastic materials without the need to resort to discontinuous finite elements methods as proposed in Fu, Lehrenfeld, Linke, Streckenbach (2021).

We construct quantum algorithms to compute the solution and/or physical observables of nonlinear ordinary differential equations (ODEs) and nonlinear Hamilton-Jacobi equations (HJE) via linear representations or exact mappings between nonlinear ODEs/HJE and linear partial differential equations (the Liouville equation and the Koopman-von Neumann equation). The connection between the linear representations and the original nonlinear system is established through the Dirac delta function or the level set mechanism. We compare the quantum linear systems algorithms based methods and the quantum simulation methods arising from different numerical approximations, including the finite difference discretisations and the Fourier spectral discretisations for the two different linear representations, with the result showing that the quantum simulation methods usually give the best performance in time complexity. We also propose the Schr\"odinger framework to solve the Liouville equation for the HJE, since it can be recast as the semiclassical limit of the Wigner transform of the Schr\"odinger equation. Comparsion between the Schr\"odinger and the Liouville framework will also be made.

In this paper, we develop a novel class of linear energy-preserving integrating factor methods for the 2D nonlinear Schr\"odinger equation with wave operator (NLSW), combining the scalar auxiliary variable approach and the integrating factor methods. A second-order scheme is first proposed, which is rigorously proved to be energy-preserving. By using the energy methods, we analyze its optimal convergence in the $H^1$ norm without any restrictions on the grid ratio, where a novel technique and an improved induction argument are proposed to overcome the difficulty posed by the unavailability of a priori $L^\infty$ estimates of numerical solutions. Based on the integrating factor Runge-Kutta methods, we extend the proposed scheme to arbitrarily high order, which is also linear and conservative. Numerical experiments are presented to confirm the theoretical analysis and demonstrate the advantages of the proposed methods.

We consider the stochastic gradient descent (SGD) algorithm driven by a general stochastic sequence, including i.i.d noise and random walk on an arbitrary graph, among others; and analyze it in the asymptotic sense. Specifically, we employ the notion of `efficiency ordering', a well-analyzed tool for comparing the performance of Markov Chain Monte Carlo (MCMC) samplers, for SGD algorithms in the form of Loewner ordering of covariance matrices associated with the scaled iterate errors in the long term. Using this ordering, we show that input sequences that are more efficient for MCMC sampling also lead to smaller covariance of the errors for SGD algorithms in the limit. This also suggests that an arbitrarily weighted MSE of SGD iterates in the limit becomes smaller when driven by more efficient chains. Our finding is of particular interest in applications such as decentralized optimization and swarm learning, where SGD is implemented in a random walk fashion on the underlying communication graph for cost issues and/or data privacy. We demonstrate how certain non-Markovian processes, for which typical mixing-time based non-asymptotic bounds are intractable, can outperform their Markovian counterparts in the sense of efficiency ordering for SGD. We show the utility of our method by applying it to gradient descent with shuffling and mini-batch gradient descent, reaffirming key results from existing literature under a unified framework. Empirically, we also observe efficiency ordering for variants of SGD such as accelerated SGD and Adam, open up the possibility of extending our notion of efficiency ordering to a broader family of stochastic optimization algorithms.

Ultra-reliability and low-latency are pivotal requirements of the new 6th generation of communication systems (xURLLC). Over the past years, to increase throughput, adaptive active antennas were introduced in advanced wireless communications, specifically in the domain of millimeter-wave (mmWave). Consequently, new lower-layer techniques were proposed to cope with practical challenges of high dimensional and electronically-steerable beams. The transition from omni-directional to highly directional antennas presents a new type of wireless systems that deliver high bandwidth, but that are susceptible to high losses and high latency variation. Classical approaches cannot close the rising gap between high throughput and low delay in those advanced systems. In this work, we incorporate effective sliding window network coding solutions in mmWave communications. While legacy systems such as rateless codes improve delay, cross-layer results show that they do not provide low latency communications (LLC - below 10 ms), due to the lossy behaviour of mmWave channel and the lower-layers' retransmission mechanisms. On the other hand, fixed sliding window random linear network coding (RLNC) is able to achieve LLC, and even better, adaptive sliding window RLNC obtains ultra-reliable LLC (Ultra-Reliable and Low-Latency Communications (URLLC) - LLC with maximum delay below 10 ms with more than 99% success rate).

Hand-based interaction, such as using a handheld controller or making hand gestures, has been widely adopted as the primary method for interacting with both virtual reality (VR) and augmented reality (AR) head-mounted displays (HMDs). In contrast, hands-free interaction avoids the need for users' hands and although it can afford additional benefits, there has been limited research in exploring and evaluating hands-free techniques for these HMDs. As VR HMDs become ubiquitous, people will need to do text editing, which requires selecting text segments. Similar to hands-free interaction, text selection is underexplored. This research focuses on both, text selection via hands-free interaction. Our exploration involves a user study with 24 participants to investigate the performance, user experience, and workload of three hands-free selection mechanisms (Dwell, Blink, Voice) to complement head-based pointing. Results indicate that Blink outperforms Dwell and Voice in completion time. Users' subjective feedback also shows that Blink is the preferred technique for text selection. This work is the first to explore hands-free interaction for text selection in VR HMDs. Our results provide a solid platform for further research in this important area.

The core of information retrieval (IR) is to identify relevant information from large-scale resources and return it as a ranked list to respond to user's information need. Recently, the resurgence of deep learning has greatly advanced this field and leads to a hot topic named NeuIR (i.e., neural information retrieval), especially the paradigm of pre-training methods (PTMs). Owing to sophisticated pre-training objectives and huge model size, pre-trained models can learn universal language representations from massive textual data, which are beneficial to the ranking task of IR. Since there have been a large number of works dedicating to the application of PTMs in IR, we believe it is the right time to summarize the current status, learn from existing methods, and gain some insights for future development. In this survey, we present an overview of PTMs applied in different components of IR system, including the retrieval component, the re-ranking component, and other components. In addition, we also introduce PTMs specifically designed for IR, and summarize available datasets as well as benchmark leaderboards. Moreover, we discuss some open challenges and envision some promising directions, with the hope of inspiring more works on these topics for future research.

Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.

北京阿比特科技有限公司