In many applications, geodesic hierarchical models are adequate for the study of temporal observations. We employ such a model derived for manifold-valued data to Kendall's shape space. In particular, instead of the Sasaki metric, we adapt a functional-based metric, which increases the computational efficiency and does not require the implementation of the curvature tensor. We propose the corresponding variational time discretization of geodesics and employ the approach for longitudinal analysis of 2D rat skulls shapes as well as 3D shapes derived from an imaging study on osteoarthritis. Particularly, we perform hypothesis test and estimate the mean trends.
Large longitudinal studies provide lots of valuable information, especially in medical applications. A problem which must be taken care of in order to utilize their full potential is that of correlation between intra-subject measurements taken at different times. For data in Euclidean space this can be done with hierarchical models, that is, models that consider intra-subject and between-subject variability in two different stages. Nevertheless, data from medical studies often takes values in nonlinear manifolds. Here, as a first step, geodesic hierarchical models have been developed that generalize the linear ansatz by assuming that time-induced intra-subject variations occur along a generalized straight line in the manifold. However, this is often not the case (e.g., periodic motion or processes with saturation). We propose a hierarchical model for manifold-valued data that extends this to include trends along higher-order curves, namely B\'ezier splines in the manifold. To this end, we present a principled way of comparing shape trends in terms of a functional-based Riemannian metric. Remarkably, this metric allows efficient, yet simple computations by virtue of a variational time discretization requiring only the solution of regression problems. We validate our model on longitudinal data from the osteoarthritis initiative, including classification of disease \emph{progression}.
We propose a unified framework to study policy evaluation (PE) and the associated temporal difference (TD) methods for reinforcement learning in continuous time and space. We show that PE is equivalent to maintaining the martingale condition of a process. From this perspective, we find that the mean--square TD error approximates the quadratic variation of the martingale and thus is not a suitable objective for PE. We present two methods to use the martingale characterization for designing PE algorithms. The first one minimizes a "martingale loss function", whose solution is proved to be the best approximation of the true value function in the mean--square sense. This method interprets the classical gradient Monte-Carlo algorithm. The second method is based on a system of equations called the "martingale orthogonality conditions" with test functions. Solving these equations in different ways recovers various classical TD algorithms, such as TD($\lambda$), LSTD, and GTD. Different choices of test functions determine in what sense the resulting solutions approximate the true value function. Moreover, we prove that any convergent time-discretized algorithm converges to its continuous-time counterpart as the mesh size goes to zero, and we provide the convergence rate. We demonstrate the theoretical results and corresponding algorithms with numerical experiments and applications.
Clustering of mixed-type datasets can be a particularly challenging task as it requires taking into account the associations between variables with different level of measurement, i.e., nominal, ordinal and/or interval. In some cases, hierarchical clustering is considered a suitable approach, as it makes few assumptions about the data and its solution can be easily visualized. Since most hierarchical clustering approaches assume variables are measured on the same scale, a simple strategy for clustering mixed-type data is to homogenize the variables before clustering. This would mean either recoding the continuous variables as categorical ones or vice versa. However, typical discretization of continuous variables implies loss of information. In this work, an agglomerative hierarchical clustering approach for mixed-type data is proposed, which relies on a barycentric coding of continuous variables. The proposed approach minimizes information loss and is compatible with the framework of correspondence analysis. The utility of the method is demonstrated on real and simulated data.
Random field models are mathematical structures used in the study of stochastic complex systems. In this paper, we compute the shape operator of Gaussian random field manifolds using the first and second fundamental forms (Fisher information matrices). Using Markov Chain Monte Carlo techniques, we simulate the dynamics of these random fields and compute the Gaussian curvature of the parametric space, analyzing how this quantity changes along phase transitions. During the simulation, we have observed an unexpected phenomenon that we called the \emph{curvature effect}, which indicates that a highly asymmetric geometric deformation happens in the underlying parametric space when there are significant increase/decrease in the system's entropy. This asymmetric pattern relates to the emergence of hysteresis, leading to an intrinsic arrow of time along the dynamics.
Classical interior penalty discontinuous Galerkin (IPDG) methods for diffusion problems require a number of assumptions on the local variation of mesh-size, polynomial degree, and of the diffusion coefficient to determine the values of the, so-called, discontinuity-penalization parameter and/or to perform error analysis. Variants of IPDG methods involving weighted averages of the gradient of the approximate solution have been proposed in the context of high-contrast diffusion coefficients to mitigate the dependence of the contrast in the stability and in the error analysis. Here, we present a new IPDG method, involving carefully constructed weighted averages of the gradient of the approximate solution, which is shown to be robust even for the most extreme simultaneous local mesh, polynomial degree and diffusion coefficient variation scenarios, without resulting in unreasonably large penalization. The new method, henceforth termed as \emph{robust IPDG} (RIPDG), offers typically significantly better conditioning than the standard IPDG method when applied to scenarios with strong mesh/polynomial degree/diffusion local variation. On the other hand, when using uniform meshes, constant polynomial degree and for problems with constant diffusion coefficients, the RIPDG method is identical to the classical IPDG. Numerical experiments indicate the favourable performance of the new RIPDG method over the classical version in terms of conditioning and error.
Stochastic actor-oriented models (SAOM) are a broadly applied modelling framework for analysing network dynamics using network panel data. They have been extended to address co-evolution of multiple networks as well as networks and behaviour. This paper extends the SAOM to the analysis of multiple network panels through a random coefficient multilevel model, estimated with a Bayesian approach. This is illustrated by a study of the dynamic interdependence of friendship and minor delinquency, represented by the combination of a one-mode and a two-mode network, using a sample of 81 school classes in the first year of secondary school.
We study the performance of shape-constrained methods for evaluating immune response profiles from early-phase vaccine trials. The motivating problem for this work involves quantifying and comparing the IgG binding immune responses to the first and second variable loops (V1V2 region) arising in HVTN 097 and HVTN 100 HIV vaccine trials. We consider unimodal and log-concave shape-constrained methods to compare the immune profiles of the two vaccines, which is reasonable because the data support that the underlying densities of the immune responses could have these shapes. To this end, we develop novel shape-constrained tests of stochastic dominance and shape-constrained plug-in estimators of the Hellinger distance between two densities. Our techniques are either tuning parameter free, or rely on only one tuning parameter, but their performance is either better (the tests of stochastic dominance) or comparable with the nonparametric methods (the estimators of Hellinger distance). The minimal dependence on tuning parameters is especially desirable in clinical contexts where analyses must be prespecified and reproducible. Our methods are supported by theoretical results and simulation studies.
Hierarchical forecasting problems arise when time series have a natural group structure, and predictions at multiple levels of aggregation and disaggregation across the groups are needed. In such problems, it is often desired to satisfy the aggregation constraints in a given hierarchy, referred to as hierarchical coherence in the literature. Maintaining hierarchical coherence while producing accurate forecasts can be a challenging problem, especially in the case of probabilistic forecasting. We present a novel method capable of accurate and coherent probabilistic forecasts for hierarchical time series. We call it Deep Poisson Mixture Network (DPMN). It relies on the combination of neural networks and a statistical model for the joint distribution of the hierarchical multivariate time series structure. By construction, the model guarantees hierarchical coherence and provides simple rules for aggregation and disaggregation of the predictive distributions. We perform an extensive empirical evaluation comparing the DPMN to other state-of-the-art methods which produce hierarchically coherent probabilistic forecasts on multiple public datasets. Compared to existing coherent probabilistic models, we obtained a relative improvement in the overall Continuous Ranked Probability Score (CRPS) of 17.1% on Australian domestic tourism data, 24.2 on the Favorita grocery sales dataset, and 6.9% on a San Francisco Bay Area highway traffic dataset.
In this work we present a novel unsupervised framework for hard training example mining. The only input to the method is a collection of images relevant to the target application and a meaningful initial representation, provided e.g. by pre-trained CNN. Positive examples are distant points on a single manifold, while negative examples are nearby points on different manifolds. Both types of examples are revealed by disagreements between Euclidean and manifold similarities. The discovered examples can be used in training with any discriminative loss. The method is applied to unsupervised fine-tuning of pre-trained networks for fine-grained classification and particular object retrieval. Our models are on par or are outperforming prior models that are fully or partially supervised.
Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds.