亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce a class of improved estimators for the mean parameter matrix of a multivariate normal distribution with an unknown variance-covariance matrix. In particular, the main results of [D.Ch\'etelat and M. T. Wells(2012). Improved Multivariate Normal Mean Estimation with Unknown Covariance when $p$ is Greater than $n$. The Annals of Statistics, Vol. 40, No.6, 3137--3160] are established in their full generalities and we provide the corrected version of their Theorem 2. Specifically, we generalize the existing results in three ways. First, we consider a parameter matrix estimation problem which enclosed as a special case the one about the vector parameter. Second, we propose a class of James-Stein matrix estimators and, we establish a necessary and a sufficient condition for any member of the proposed class to have a finite risk function. Third, we present the conditions for the proposed class of estimators to dominate the maximum likelihood estimator. On the top of these interesting contributions, the additional novelty consists in the fact that, we extend the methods suitable for the vector parameter case and the derived results hold in the classical case as well as in the context of high and ultra-high dimensional data.

相關內容

In this paper, we propose the deep finite volume method (DFVM), a novel deep learning method for solving %high-order (order $\geq 2$) partial differential equations (PDEs). The key idea is to design a new loss function based on the local conservation property over the so-called {\it control volumes}, derived from the original PDE. Since the DFVM is designed according to a {\it weak instead of strong} form of the PDE, it may achieve better accuracy than the strong-form-based deep learning method such as the well-known PINN, when the to-be-solved PDE has an insufficiently smooth solution. Moreover, since the calculation of second-order derivatives of neural networks has been transformed to that of first-order derivatives which can be implemented directly by the Automatic Differentiation mechanism(AD), the DFVM usually has a computational cost much lower than that of the methods which need to compute second-order derivatives by the AD. Our numerical experiments show that compared to some deep learning methods in the literature such as the PINN, DRM, and WAN, the DFVM obtains the same or higher accurate approximate solutions by consuming significantly lower computational cost. Moreover, for some PDE with a nonsmooth solution, the relative error of approximate solutions by DFVM is two orders of magnitude less than that by the PINN.

In this paper, we propose a method for knowledge graph construction in power distribution networks. This method leverages entity features, which involve their semantic, phonetic, and syntactic characteristics, in both the knowledge graph of distribution network and the dispatching texts. An enhanced model based on Convolutional Neural Network, is utilized for effectively matching dispatch text entities with those in the knowledge graph. The effectiveness of this model is evaluated through experiments in real-world power distribution dispatch scenarios. The results indicate that, compared with the baselines, the proposed model excels in linking a variety of entity types, demonstrating high overall accuracy in power distribution knowledge graph construction task.

In this paper, we propose a novel method to enhance sentiment analysis by addressing the challenge of context-specific word meanings. It combines the advantages of a BERT model with a knowledge graph based synonym data. This synergy leverages a dynamic attention mechanism to develop a knowledge-driven state vector. For classifying sentiments linked to specific aspects, the approach constructs a memory bank integrating positional data. The data are then analyzed using a DCGRU to pinpoint sentiment characteristics related to specific aspect terms. Experiments on three widely used datasets demonstrate the superior performance of our method in sentiment classification.

In this paper, we propose a probabilistic reduced-dimensional vector autoregressive (PredVAR) model to extract low-dimensional dynamics from high-dimensional noisy data. The model utilizes an oblique projection to partition the measurement space into a subspace that accommodates the reduced-dimensional dynamics and a complementary static subspace. An optimal oblique decomposition is derived for the best predictability regarding prediction error covariance. Building on this, we develop an iterative PredVAR algorithm using maximum likelihood and the expectation-maximization (EM) framework. This algorithm alternately updates the estimates of the latent dynamics and optimal oblique projection, yielding dynamic latent variables with rank-ordered predictability and an explicit latent VAR model that is consistent with the outer projection model. The superior performance and efficiency of the proposed approach are demonstrated using data sets from a synthesized Lorenz system and an industrial process from Eastman Chemical.

In this paper, we consider multivariate functional time series with a two-way dependence structure: a serial dependence across time points and a graphical interaction among the multiple functions within each time point. We develop the notion of dynamic weak separability, a more general condition than those assumed in literature, and use it to characterize the two-way structure in multivariate functional time series. Based on the proposed weak separability, we develop a unified framework for functional graphical models and dynamic principal component analysis, and further extend it to optimally reconstruct signals from contaminated functional data using graphical-level information. We investigate asymptotic properties of the resulting estimators and illustrate the effectiveness of our proposed approach through extensive simulations. We apply our method to hourly air pollution data that were collected from a monitoring network in China.

In this paper, we investigate joint power control and access point (AP) selection scheme in a cell-free massive multiple-input multiple-output (CF-mMIMO) system under an active eavesdropping attack, where an eavesdropper tries to overhear the signal sent to one of the legitimate users by contaminating the uplink channel estimation. We formulate a joint optimization problem to minimize the eavesdropping spectral efficiency (SE) while guaranteeing a given SE requirement at legitimate users. The challenging formulated problem is converted into a more tractable form and an efficient low-complexity accelerated projected gradient (APG)-based approach is proposed to solve it. Our findings reveal that the proposed joint optimization approach significantly outperforms the heuristic approaches in terms of secrecy SE (SSE). For instance, the $50\%$ likely SSE performance of the proposed approach is $265\%$ higher than that of equal power allocation and random AP selection scheme.

In this paper, we propose a cooperative long-term task execution (LTTE) algorithm for protecting a moving target into the interior of an ordering-flexible convex hull by a team of robots resiliently in the changing environments. Particularly, by designing target-approaching and sensing-neighbor collision-free subtasks, and incorporating these subtasks into the constraints rather than the traditional cost function in an online constraint-based optimization framework, the proposed LTTE can systematically guarantee long-term target convoying under changing environments in the n-dimensional Euclidean space. Then, the introduction of slack variables allow for the constraint violation of different subtasks; i.e., the attraction from target-approaching constraints and the repulsion from time-varying collision-avoidance constraints, which results in the desired formation with arbitrary spatial ordering sequences. Rigorous analysis is provided to guarantee asymptotical convergence with challenging nonlinear couplings induced by time-varying collision-free constraints. Finally, 2D experiments using three autonomous mobile robots (AMRs) are conducted to validate the effectiveness of the proposed algorithm, and 3D simulations tackling changing environmental elements, such as different initial positions, some robots suddenly breakdown and static obstacles are presented to demonstrate the multi-dimensional adaptability, robustness and the ability of obstacle avoidance of the proposed method.

The prevalence of the powerful multilingual models, such as Whisper, has significantly advanced the researches on speech recognition. However, these models often struggle with handling the code-switching setting, which is essential in multilingual speech recognition. Recent studies have attempted to address this setting by separating the modules for different languages to ensure distinct latent representations for languages. Some other methods considered the switching mechanism based on language identification. In this study, a new attention-guided adaptation is proposed to conduct parameter-efficient learning for bilingual ASR. This method selects those attention heads in a model which closely express language identities and then guided those heads to be correctly attended with their corresponding languages. The experiments on the Mandarin-English code-switching speech corpus show that the proposed approach achieves a 14.2% mixed error rate, surpassing state-of-the-art method, where only 5.6% additional parameters over Whisper are trained.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司