亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a multi-step procedure to construct the dynamic motion model of an autonomous quadcopter, identify the model parameters, and design a model-based nonlinear trajectory tracking controller. The aim of the proposed method is to speed up the commissioning of a new quadcopter design, i.e., to enable the drone to perform agile maneuvers with high precision in the shortest time possible. After a brief introduction to the theoretical background of the modelling and control design, the steps of the proposed method are presented using the example of a self-developed quadcopter platform. The performance of the method is tested and evaluated by real flight experiments.

相關內容

An approach to parameter optimization for the low-rank matrix recovery method in hyperspectral imaging is discussed. We formulate an optimization problem with respect to the initial parameters of the low-rank matrix recovery method. The performance for different parameter settings is compared in terms of computational times and memory. The results are evaluated by computing the peak signal-to-noise ratio as a quantitative measure. The potential improvement of the performance of the noise reduction method is discussed when optimizing the choice of the initial values. The optimization method is tested on standard and openly available hyperspectral data sets including Indian Pines, Pavia Centre, and Pavia University.

We consider an unknown multivariate function representing a system-such as a complex numerical simulator-taking both deterministic and uncertain inputs. Our objective is to estimate the set of deterministic inputs leading to outputs whose probability (with respect to the distribution of the uncertain inputs) of belonging to a given set is less than a given threshold. This problem, which we call Quantile Set Inversion (QSI), occurs for instance in the context of robust (reliability-based) optimization problems, when looking for the set of solutions that satisfy the constraints with sufficiently large probability. To solve the QSI problem, we propose a Bayesian strategy based on Gaussian process modeling and the Stepwise Uncertainty Reduction (SUR) principle, to sequentially choose the points at which the function should be evaluated to efficiently approximate the set of interest. We illustrate the performance and interest of the proposed SUR strategy through several numerical experiments.

We present a rigorous and precise analysis of the maximum degree and the average degree in a dynamic duplication-divergence graph model introduced by Sol\'e, Pastor-Satorras et al. in which the graph grows according to a duplication-divergence mechanism, i.e. by iteratively creating a copy of some node and then randomly alternating the neighborhood of a new node with probability $p$. This model captures the growth of some real-world processes e.g. biological or social networks. In this paper, we prove that for some $0 < p < 1$ the maximum degree and the average degree of a duplication-divergence graph on $t$ vertices are asymptotically concentrated with high probability around $t^p$ and $\max\{t^{2 p - 1}, 1\}$, respectively, i.e. they are within at most a polylogarithmic factor from these values with probability at least $1 - t^{-A}$ for any constant $A > 0$.

The main computational cost per iteration of adaptive cubic regularization methods for solving large-scale nonconvex problems is the computation of the step $s_k$, which requires an approximate minimizer of the cubic model. We propose a new approach in which this minimizer is sought in a low dimensional subspace that, in contrast to classical approaches, is reused for a number of iterations. A regularized Newton step to correct $s_k$ is also incorporated whenever needed. We show that our method increases efficiency while preserving the worst-case complexity of classical cubic regularized methods. We also explore the use of rational Krylov subspaces for the subspace minimization, to overcome some of the issues encountered when using polynomial Krylov subspaces. We provide several experimental results illustrating the gains of the new approach when compared to classic implementations.

When considering initial stress field in geomaterial, nonzero resultant of shallow tunnel excavation exists, which produces logarithmic items in complex potentials, and would further lead to a unique displacement singularity at infinity to violate geo-engineering fact in real world. The mechanical and mathematical reasons of such a unique displacement singularity in the existing mechanical models are elaborated, and a new mechanical model is subsequently proposed to eliminate this singularity by constraining far-field ground surface displacement, and the original unbalanced resultant problem is converted into an equilibrium one with mixed boundary conditions. To solve stress and displacement in the new model, the analytic continuation is applied to transform the mixed boundary conditions into a homogenerous Riemann-Hilbert problem with extra constraints, which is then solved using an approximate and iterative method with good numerical stability. The Lanczos filtering is applied to the stress and displacement solution to reduce the Gibbs phenomena caused by abrupt change of the boundary conditions along ground surface. Several numerical cases are conducted to verify the proposed mechanical model and the results strongly validate that the proposed mechanical model successfully eliminates the displacement singularity caused by unbalanced resultant with good convergence and accuracy to obtain stress and displacement for shallow tunnel excavation. A parametric investigation is subsequently conducted to study the influence of tunnel depth, lateral coefficient, and free surface range on stress and displacement distribution in geomaterial.

This paper derives a discrete dual problem for a prototypical hybrid high-order method for convex minimization problems. The discrete primal and dual problem satisfy a weak convex duality that leads to a priori error estimates with convergence rates under additional smoothness assumptions. This duality holds for general polytopal meshes and arbitrary polynomial degree of the discretization. A nouvelle postprocessing is proposed and allows for a~posteriori error estimates on simplicial meshes using primal-dual techniques. This motivates an adaptive mesh-refining algorithm, which performs superiorly compared to uniform mesh refinements.

This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean-covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.

The purpose of this paper is to introduce a new numerical method to solve multi-marginal optimal transport problems with pairwise interaction costs. The complexity of multi-marginal optimal transport generally scales exponentially in the number of marginals $m$. We introduce a one parameter family of cost functions that interpolates between the original and a special cost function for which the problem's complexity scales linearly in $m$. We then show that the solution to the original problem can be recovered by solving an ordinary differential equation in the parameter $\epsilon$, whose initial condition corresponds to the solution for the special cost function mentioned above; we then present some simulations, using both explicit Euler and explicit higher order Runge-Kutta schemes to compute solutions to the ODE, and, as a result, the multi-marginal optimal transport problem.

Partially linear additive models generalize linear ones since they model the relation between a response variable and covariates by assuming that some covariates have a linear relation with the response but each of the others enter through unknown univariate smooth functions. The harmful effect of outliers either in the residuals or in the covariates involved in the linear component has been described in the situation of partially linear models, that is, when only one nonparametric component is involved in the model. When dealing with additive components, the problem of providing reliable estimators when atypical data arise, is of practical importance motivating the need of robust procedures. Hence, we propose a family of robust estimators for partially linear additive models by combining $B-$splines with robust linear regression estimators. We obtain consistency results, rates of convergence and asymptotic normality for the linear components, under mild assumptions. A Monte Carlo study is carried out to compare the performance of the robust proposal with its classical counterpart under different models and contamination schemes. The numerical experiments show the advantage of the proposed methodology for finite samples. We also illustrate the usefulness of the proposed approach on a real data set.

We introduce a new tensor integration method for time-dependent PDEs that controls the tensor rank of the PDE solution via time-dependent diffeomorphic coordinate transformations. Such coordinate transformations are generated by minimizing the normal component of the PDE operator relative to the tensor manifold that approximates the PDE solution via a convex functional. The proposed method significantly improves upon and may be used in conjunction with the coordinate-adaptive algorithm we recently proposed in JCP (2023) Vol. 491, 112378, which is based on non-convex relaxations of the rank minimization problem and Riemannian optimization. Numerical applications demonstrating the effectiveness of the proposed coordinate-adaptive tensor integration method are presented and discussed for prototype Liouville and Fokker-Planck equations.

北京阿比特科技有限公司