When considering initial stress field in geomaterial, nonzero resultant of shallow tunnel excavation exists, which produces logarithmic items in complex potentials, and would further lead to a unique displacement singularity at infinity to violate geo-engineering fact in real world. The mechanical and mathematical reasons of such a unique displacement singularity in the existing mechanical models are elaborated, and a new mechanical model is subsequently proposed to eliminate this singularity by constraining far-field ground surface displacement, and the original unbalanced resultant problem is converted into an equilibrium one with mixed boundary conditions. To solve stress and displacement in the new model, the analytic continuation is applied to transform the mixed boundary conditions into a homogenerous Riemann-Hilbert problem with extra constraints, which is then solved using an approximate and iterative method with good numerical stability. The Lanczos filtering is applied to the stress and displacement solution to reduce the Gibbs phenomena caused by abrupt change of the boundary conditions along ground surface. Several numerical cases are conducted to verify the proposed mechanical model and the results strongly validate that the proposed mechanical model successfully eliminates the displacement singularity caused by unbalanced resultant with good convergence and accuracy to obtain stress and displacement for shallow tunnel excavation. A parametric investigation is subsequently conducted to study the influence of tunnel depth, lateral coefficient, and free surface range on stress and displacement distribution in geomaterial.
Many real-world processes have complex tail dependence structures that cannot be characterized using classical Gaussian processes. More flexible spatial extremes models exhibit appealing extremal dependence properties but are often exceedingly prohibitive to fit and simulate from in high dimensions. In this paper, we develop a new spatial extremes model that has flexible and non-stationary dependence properties, and we integrate it in the encoding-decoding structure of a variational autoencoder (XVAE), whose parameters are estimated via variational Bayes combined with deep learning. The XVAE can be used as a spatio-temporal emulator that characterizes the distribution of potential mechanistic model output states and produces outputs that have the same statistical properties as the inputs, especially in the tail. As an aside, our approach also provides a novel way of making fast inference with complex extreme-value processes. Through extensive simulation studies, we show that our XVAE is substantially more time-efficient than traditional Bayesian inference while also outperforming many spatial extremes models with a stationary dependence structure. To further demonstrate the computational power of the XVAE, we analyze a high-resolution satellite-derived dataset of sea surface temperature in the Red Sea, which includes 30 years of daily measurements at 16703 grid cells. We find that the extremal dependence strength is weaker in the interior of Red Sea and it has decreased slightly over time.
Bayesian optimization (BO), while proved highly effective for many black-box function optimization tasks, requires practitioners to carefully select priors that well model their functions of interest. Rather than specifying by hand, researchers have investigated transfer learning based methods to automatically learn the priors, e.g. multi-task BO (Swersky et al., 2013), few-shot BO (Wistuba and Grabocka, 2021) and HyperBO (Wang et al., 2022). However, those prior learning methods typically assume that the input domains are the same for all tasks, weakening their ability to use observations on functions with different domains or generalize the learned priors to BO on different search spaces. In this work, we present HyperBO+: a pre-training approach for hierarchical Gaussian processes that enables the same prior to work universally for Bayesian optimization on functions with different domains. We propose a two-step pre-training method and analyze its appealing asymptotic properties and benefits to BO both theoretically and empirically. On real-world hyperparameter tuning tasks that involve multiple search spaces, we demonstrate that HyperBO+ is able to generalize to unseen search spaces and achieves lower regrets than competitive baselines.
We introduce the modified planar rotator method (MPRS), a physically inspired machine learning method for spatial/temporal regression. MPRS is a non-parametric model which incorporates spatial or temporal correlations via short-range, distance-dependent ``interactions'' without assuming a specific form for the underlying probability distribution. Predictions are obtained by means of a fully autonomous learning algorithm which employs equilibrium conditional Monte Carlo simulations. MPRS is able to handle scattered data and arbitrary spatial dimensions. We report tests on various synthetic and real-word data in one, two and three dimensions which demonstrate that the MPRS prediction performance (without parameter tuning) is competitive with standard interpolation methods such as ordinary kriging and inverse distance weighting. In particular, MPRS is a particularly effective gap-filling method for rough and non-Gaussian data (e.g., daily precipitation time series). MPRS shows superior computational efficiency and scalability for large samples. Massive data sets involving millions of nodes can be processed in a few seconds on a standard personal computer.
We present ReCAT, a recursive composition augmented Transformer that is able to explicitly model hierarchical syntactic structures of raw texts without relying on gold trees during both learning and inference. Existing research along this line restricts data to follow a hierarchical tree structure and thus lacks inter-span communications. To overcome the problem, we propose a novel contextual inside-outside (CIO) layer that learns contextualized representations of spans through bottom-up and top-down passes, where a bottom-up pass forms representations of high-level spans by composing low-level spans, while a top-down pass combines information inside and outside a span. By stacking several CIO layers between the embedding layer and the attention layers in Transformer, the ReCAT model can perform both deep intra-span and deep inter-span interactions, and thus generate multi-grained representations fully contextualized with other spans. Moreover, the CIO layers can be jointly pre-trained with Transformers, making ReCAT enjoy scaling ability, strong performance, and interpretability at the same time. We conduct experiments on various sentence-level and span-level tasks. Evaluation results indicate that ReCAT can significantly outperform vanilla Transformer models on all span-level tasks and baselines that combine recursive networks with Transformers on natural language inference tasks. More interestingly, the hierarchical structures induced by ReCAT exhibit strong consistency with human-annotated syntactic trees, indicating good interpretability brought by the CIO layers.
We consider the so-called field-road diffusion model in a bounded domain, consisting of two parabolic PDEs posed on sets of different dimensions (a {\it field} and a {\it road} in a population dynamics context) and coupled through exchange terms on the road, which makes its analysis quite involved. We propose a TPFA finite volume scheme. In both the continuous and the discrete settings, we prove theexponential decay of an entropy, and thus the long time convergence to the stationary state selected by the total mass of the initial data. To deal with the problem of different dimensions, we artificially \lq\lq thicken'' the road and, then, establish a rather unconventional Poincar{\'e}-Wirtinger inequality. Numerical simulations confirm and complete the analysis, and raise new issues.
Temporal analysis of products (TAP) reactors enable experiments that probe numerous kinetic processes within a single set of experimental data through variations in pulse intensity, delay, or temperature. Selecting additional TAP experiments often involves arbitrary selection of reaction conditions or the use of chemical intuition. To make experiment selection in TAP more robust, we explore the efficacy of model-based design of experiments (MBDoE) for precision in TAP reactor kinetic modeling. We successfully applied this approach to a case study of synthetic oxidative propane dehydrogenation (OPDH) that involves pulses of propane and oxygen. We found that experiments identified as optimal through the MBDoE for precision generally reduce parameter uncertainties to a higher degree than alternative experiments. The performance of MBDoE for model divergence was also explored for OPDH, with the relevant active sites (catalyst structure) being unknown. An experiment that maximized the divergence between the three proposed mechanisms was identified and led to clear mechanism discrimination. However, re-optimization of kinetic parameters eliminated the ability to discriminate. The findings yield insight into the prospects and limitations of MBDoE for TAP and transient kinetic experiments.
We present a registration method for model reduction of parametric partial differential equations with dominating advection effects and moving features. Registration refers to the use of a parameter-dependent mapping to make the set of solutions to these equations more amicable for approximation using classical reduced basis methods. The proposed approach utilizes concepts from optimal transport theory, as we utilize Monge embeddings to construct these mappings in a purely data-driven way. The method relies on one interpretable hyper-parameter. We discuss how our approach relates to existing works that combine model order reduction and optimal transport theory. Numerical results are provided to demonstrate the effect of the registration. This includes a model problem where the solution is itself a probability density and one where it is not.
We show how quantum-inspired 2d tensor networks can be used to efficiently and accurately simulate the largest quantum processors from IBM, namely Eagle (127 qubits), Osprey (433 qubits) and Condor (1121 qubits). We simulate the dynamics of a complex quantum many-body system -- specifically, the kicked Ising experiment considered recently by IBM in Nature 618, p. 500-505 (2023) -- using graph-based Projected Entangled Pair States (gPEPS), which was proposed by some of us in PRB 99, 195105 (2019). Our results show that simple tensor updates are already sufficient to achieve very large unprecedented accuracy with remarkably low computational resources for this model. Apart from simulating the original experiment for 127 qubits, we also extend our results to 433 and 1121 qubits, thus setting a benchmark for the newest IBM quantum machines. We also report accurate simulations for infinitely-many qubits. Our results show that gPEPS are a natural tool to efficiently simulate quantum computers with an underlying lattice-based qubit connectivity, such as all quantum processors based on superconducting qubits.
For an approximate solution of the non-stationary nonlinear Navier-Stokes equations for the flow of an incompressible viscous fluid, depending on the set of input data and the geometry of the domain, the area of optimal parameters in the variables $\nu$ and $\nu^{\ast}$ is experimentally determined depending on $\delta$ included in the definition of the $R_{\nu}$-generalized solution of the problem and the degree of the weight function in the basis of the finite element method. To discretize the problem in time, the Runge-Kutta methods of the first and second orders were used. The areas of optimal parameters for various values of the incoming angles are established.
This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean-covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.